
Biostatistics 666

Problem Set 8 Due April 6, 2006

Inheritance Vector Based Pedigree Analysis

- 1. Consider a pair of affected siblings genotyped for a marker with 2 alleles, with frequencies $p_1 = 0.6$ and $p_2 = 0.4$. The two siblings and their mother were genotyped and all three had genotype 1/2.
 - a) List all possible inheritance vectors for this pedigree. For convenience, it may be useful to apply the founder symmetry of Kruglyak and colleagues to reduce the number of inheritance vectors.
 - b) Calculate the probability of observed genotypes for each of the inheritance vectors and calculate the posterior probability of each inheritance vector conditional on the observed genotypes.
 - c) Calculate information content for this family.
 - d) Calculate the Z-score for a non-parametric linkage statistic based on the S_{pairs} scoring function. The S_{pairs} scoring function sums IBD sharing among all pairs affected individuals for each inheritance vector.
 - e) Calculate the parametric LOD score for this family, assuming a disease model where the disease allele frequency is $p_D = 0.001$ and the disease allele frequencies are $f_{DD} = 0.20$, $f_{Dd} = 0.10$ and $f_{dd} = 0.0$.

2. Consider the pedigree and the inheritance graph below:

Calculate the probability of the observed genotypes conditional on the inheritance graph. In your calculations, denote the allele frequency of alleles 1, 2, 3 and 4 as p_1 , p_2 , p_3 and p_4 respectively. You can assume there is no genotyping error.