Genotypes, Phenotypes and Hardy Weinberg Equilibrium

> Biostatistics 666 Lecture II

Previously: Refresher on Genetics

- DNA sequence
 - Human Genome
- Inheritance of genetic information
- Sequence variation
 - VNTRs, microsatellites and SNPs

Common Types of Genetic Study

Gregor Johann Mendel

- Discovered basic principles of genetics
 - "The Father of Genetics"
 - Monk, lived 1822 1884
- Crosses between strains of peas
 - Garden pea (*Pisum sativum*)
 - Each strain has particular characters
 - Height, flower color, seed shape ...

Mendel's Experiment

- Crossed different truebreeding strains
 - Identical results for reciprocal crosses
- F₁ resembled one of the parental strains
- In F₂ generation, the other parental trait reappears ...

Mendel's Numbers

- Seeds: Yellow vs. Green
 - F₁: All yellow
 - F₂: 6022 yellow, 2001 green
 - 75.1% yellow, 24.9% green
- Seeds: Smooth vs. Wrinkled
 - F₁: All smooth
 - F₂: 5474 smooth, 1850 wrinkled
 - 74.7% yellow, 25.3% wrinkled

Phenotype vs. Genotype

Genotype

Underlying genetic constitution

Phenotype

Observed manifestation of a phenotype

The yellow peas in the parental and F₁ generations are not the same

Mendel's Interpretation

- Each trait determined by "particulate factors" (genes)
 - E.g.: Seed colour
- Alternative forms for each factor (alleles)
 - E.g.: Yellow seeds or green seeds
- Each plant carried two alleles
 - Identical for true breeding parental strains
 - Different for F₁ generation

The Principle of Segregation

Mendel's First Law

The two alleles of a gene pair segregate from each other in the formation of gametes

(gametes are reproductive cells that fuse to form a new organism in sexual reproduction)

Genotypes

Each individual carries two alleles

- If there are **n** alternative alleles ...
- ... there will be n(n+1)/2 possible genotypes

Homozygotes

- The two alleles are the same
- E.g.: Green/Green or Yellow/Yellow

Heterozygotes

- The two alleles are different
- E.g.: Green/Yellow

Penetrance

 Describes the relationship between phenotypes and genotypes

Complete Penetrance

 Each genotype corresponds to only one phenotype

Incomplete Penetrance

 Link between phenotype and genotype is only probabilistic

The ABO blood group

- Important for blood transfusions
- Determined by alleles of the ABO gene
- 3 alternative alleles
 - A, B and O
- 6 possible genotypes, n (n + 1) / 2
 - A/A, A/B, A/O, B/B, B/O, O/O

ABO Blood Group II

-

Phenotype -	Antigen		Antibody	
	А	В	А	В
A	+	-	-	+
B	-	+	+	-
0	-	-	+	+
AB	+	+	-	-

Relationships between alleles

Relation between alleles

- A and B are **dominant** over O
- O is recessive in relation to A and B
- A and B are codominant
- In this case all genotypes are fully **penetrant**

Genotype	Phenotype
A/A	А
A/B	AB
A/O	Α
B/B	В
B/O	В
0/0	0

BRCA1 and Breast Cancer

- BRCA1 mutations predispose to breast cancer
 - About 0.1% of the population carries mutations in the BRCA1 gene
- Disease Risk
 - Age 40 60 80
 - Carriers 40% 70% 80%
 - Non-carriers 0.4% 3% 8%

Alleles, Genotypes and Phenotypes

- Classifying genotypes
 - Homozygous
 - Heterozygous
- Penetrance
- Relationships between alleles
 - Dominant, Recessive, Co-Dominant

Genes in Populations

- Genotype Frequencies
- Haplotype Frequencies
- Allele Frequencies
- Penetrance Function
- Derived measures of marker informativeness

Notation

- p_{ij}
 - frequency of genotype i/j in the population
 n(n+1)/2 of these
- p_i
 - frequency of allele i in the gene pool
 - n of these
- Write allele frequencies as function of genotype frequencies

Hardy-Weinberg Equilibrium

- Random union of games
- Relationship discovered it in 1908
 - Hardy, British mathematician
 - Weinberg, German physician
- Shows n allele frequencies determine n(n+1)/2 genotype frequencies
 - Large populations

Required Assumptions

- Diploid, sexual organism
 - Non-overlapping generations
- Autosome
- Large population
- Random mating
- Equal genotype frequencies among sexes
- Selection

Random Mating: Mating Type Frequencies

Mating	Frequency
$A_1A_1^*A_1A_1$	p ₁₁ ²
$A_1A_1^*A_1A_2$	2p ₁₁ p ₁₂
$A_1A_1^*A_2A_2$	2p ₁₁ p ₂₂
$A_1A_2^*A_1A_2$	p ₁₂ ²
$A_1A_2^*A_2A_2$	2p ₁₂ p ₂₂
$A_2A_2^*A_2A_2$	p ₂₂ ²
Total	1.0

Mendelian Segregation: Offspring Genotype Frequencies

		Offspring		
Mating	Frequency	A_1A_1	A_1A_2	A_2A_2
$A_1A_1^*A_1A_1$	p ₁₁ ²	p ₁₁ ²		
$A_1A_1^*A_1A_2$	$2p_{11}p_{12}$	$p_{11}p_{12}$	$p_{11}p_{12}$	
$A_1A_1^*A_2A_2$	$2p_{11}p_{22}$		$2p_{11}p_{22}$	
$A_1 A_2 * A_1 A_2$	p ₁₂ ²	¹ ⁄ ₄ p ₁₂ ²	¹ / ₂ p ₁₂ ²	¹ ⁄ ₄ p ₁₂ ²
$A_1A_2^*A_2A_2$	$2p_{12}p_{22}$		p ₁₂ p ₂₂	$p_{12}p_{22}$
$A_2A_2^*A_2A_2$	p ₂₂ ²			p ₂₂ ²

And now...

 $p'_{11} = p_{11}^2 + p_{11}p_{12} + \frac{1}{4}p_{12}^2$ $=(p_{11} + \frac{1}{2} p_{12})^2$ $= p_1^2$ $p'_{22} = p_{22}^2 + p_{22}p_{12} + \frac{1}{4}p_{12}^2$ $=(p_{22} + \frac{1}{2}p_{12})^2$ $= p_{2}^{2}$ $p'_{12} = 2p_{11}p_{22} + p_{11}p_{12} + p_{12}p_{22} + \frac{1}{2}p_{12}^2$ $= 2(p_{11} + \frac{1}{2}p_{12})(p_{22} + \frac{1}{2}p_{12})$ $=2p_1p_2$

Conclusion

- Genotype frequencies are function of allele frequencies
 - Equilibrium reached in one generation
 - Independent of initial genotype frequencies
 - Random mating, etc. required
- Conform to binomial expansion

$$(p_1 + p_2)^2 = p_1^2 + 2p_1p_2 + p_2^2$$

A few more notes...

- Can be expanded to multiple alleles
 - Expand $(p_1 + p_2 + p_3 + \cdots + p_k)^2$
- Holds in almost all human populations
 - Little inbreeding (typical $F = \sim 0.005$)
- Deviations can suggest:
 - Problems with experimental assays
 - Non-independence of observations
 - Selection
 - Disease locus

Probability that two alleles will differ

$$H=1-\sum p_i^2$$

For a equally frequent alleles

$$H = 1 - \frac{1}{a} = \frac{a-1}{a}$$

Sometimes called "gene diversity"

Probability that alleles of parent can be distinguished in offspring Botstein et al, 1980. Markers that could track dominant alleles

PIC

Probability that parent will heterozygous and informative in relation to spouse

PIC – Definition

In general:

$$PIC = 1 - \sum_{i=1}^{n} p_i^2 - \sum_{i=1}^{n} \sum_{j=i+1}^{n} 2(p_i p_j)^2$$

For a equally frequent alleles

$$PIC = \frac{a-1}{a} - \frac{a-1}{a^3}$$

PIC <= H</p>

Exercise

ABO locus allele frequencies

- A frequency 0.3
- B frequency 0.1
- O frequency 0.6
- Calculate genotype frequencies
- Calculate heterozygosity and PIC
- Calculate phenotype frequencies

NOD2 and Bowel Disease

- Leu1007fs
 - Frame shift mutation at position 1007
 - Frequency of about 5%
 - Disrupts gene
- Penetrance
 - Genotype +/+ -/+ -/-
 - P(Crohn's|G) 0.1% 0.2% 3%
- Calculate frequency of -/- genotype in population and among patients...