Genotypes, Phenotypes and Hardy Weinberg Equilibrium

Biostatistics 666
Lecture II

Previously: Refresher on Genetics

- DNA sequence
- Human Genome
- Inheritance of genetic information
- Sequence variation
- VNTRs, microsatellites and SNPs
- Common Types of Genetic Study

Gregor Johann Mendel

- Discovered basic principles of genetics
- "The Father of Genetics"
- Monk, lived 1822 - 1884
- Crosses between strains of peas
- Garden pea (Pisum sativum)
- Each strain has particular characters
- Height, flower color, seed shape ...

Mendel's Experiment

- Crossed different truebreeding strains
- Identical results for reciprocal crosses
- F_{1} resembled one of the parental strains
- In F_{2} generation, the other parental trait

Pure-breeding green line

Mendel's Numbers

- Seeds: Yellow vs. Green
- F_{1} : All yellow
- F_{2} : 6022 yellow, 2001 green
- 75.1\% yellow, 24.9\% green
- Seeds: Smooth vs. Wrinkled
- F_{1} : All smooth
- F_{2} : 5474 smooth, 1850 wrinkled
- 74.7\% yellow, 25.3\% wrinkled

Phenotype vs. Genotype

- Genotype
- Underlying genetic constitution
- Phenotype
- Observed manifestation of a phenotype
- The yellow peas in the parental and F_{1} generations are not the same

Mendel's Interpretation

- Each trait determined by "particulate factors" (genes)
- E.g.: Seed colour
- Alternative forms for each factor (alleles)
- E.g.: Yellow seeds or green seeds
- Each plant carried two alleles
- Identical for true breeding parental strains
- Different for F_{1} generation

The Principle of Segregation

- Mendel's First Law
- The two alleles of a gene pair segregate from each other in the formation of gametes
(gametes are reproductive cells that fuse to form a new organism in sexual reproduction)

Genotypes

- Each individual carries two alleles
- If there are \mathbf{n} alternative alleles ...
- ... there will be $\mathbf{n}(\mathbf{n + 1}) / \mathbf{2}$ possible genotypes
- Homozygotes
- The two alleles are the same
- E.g.: Green/Green or Yellow/Yellow
- Heterozygotes
- The two alleles are different
- E.g.: Green/Yellow

Penetrance

- Describes the relationship between phenotypes and genotypes
- Complete Penetrance
- Each genotype corresponds to only one phenotype
- Incomplete Penetrance
- Link between phenotype and genotype is only probabilistic

The ABO blood group

- Important for blood transfusions
- Determined by alleles of the ABO gene
- 3 alternative alleles
- A, B and O
- 6 possible genotypes, $n(n+1) / 2$ - A/A, A/B, A/O, B/B, B/O, O/O

ABO Blood Group II

Phenotype	Antigen		Antibody	
	A	B	A	B
A	+	-	-	+
B	-	+	+	-
O	-	-	+	+
AB	+	+	-	-

Relationships between alleles

- Relation between alleles
- A and B are dominant over O
- O is recessive in relation to A and B
- A and B are codominant
- In this case all genotypes

Genotype	Phenotype
A/A	A
A/B	AB
A/O	A
B/B	B
B/O	B
O/O	O

BRCA1 and Breast Cancer

- BRCA1 mutations predispose to breast cancer
- About 0.1% of the population carries mutations in the BRCA1 gene
- Disease Risk
- Age
- Carriers 40\%
- Non-carriers 0.4\%

40
60
70\%
3\%

80
80\%
8\%

Alleles, Genotypes and Phenotypes

- Classifying genotypes
- Homozygous
- Heterozygous
- Penetrance
- Relationships between alleles
- Dominant, Recessive, Co-Dominant

Genes in Populations

- Genotype Frequencies
- Haplotype Frequencies
- Allele Frequencies
- Penetrance Function
- Derived measures of marker informativeness

Notation

- $p_{i j}$
- frequency of genotype i / j in the population
- $\mathrm{n}(\mathrm{n}+1) / 2$ of these
- p_{i}
- frequency of allele i in the gene pool
- n of these
- Write allele frequencies as function of genotype frequencies

Hardy-Weinberg Equilibrium

- Random union of games
- Relationship discovered it in 1908
- Hardy, British mathematician
- Weinberg, German physician
- Shows \mathbf{n} allele frequencies determine $\mathbf{n}(\mathbf{n + 1}) / \mathbf{2}$ genotype frequencies
- Large populations

Required Assumptions

- Diploid, sexual organism
- Non-overlapping generations
- Autosome
- Large population
- Random mating
- Equal genotype frequencies among sexes
- Selection

Random Mating:
 Mating Type Frequencies

Mating	Frequency
$\mathrm{A}_{1} \mathrm{~A}_{1}{ }^{*} \mathrm{~A}_{1} \mathrm{~A}_{1}$	$\mathrm{p}_{11}{ }^{2}$
$\mathrm{~A}_{1} \mathrm{~A}_{1}{ }^{*} \mathrm{~A}_{1} \mathrm{~A}_{2}$	$2 \mathrm{p}_{11} \mathrm{p}_{12}$
$\mathrm{~A}_{1} \mathrm{~A}_{1}{ }^{*} \mathrm{~A}_{2} \mathrm{~A}_{2}$	$2 \mathrm{p}_{11} \mathrm{p}_{22}$
$\mathrm{~A}_{1} \mathrm{~A}_{2}{ }^{*} \mathrm{~A}_{1} \mathrm{~A}_{2}$	$\mathrm{p}_{12}{ }^{2}$
$\mathrm{~A}_{1} \mathrm{~A}_{2}{ }^{*} \mathrm{~A}_{2} \mathrm{~A}_{2}$	$2 \mathrm{p}_{12} \mathrm{p}_{22}$
$\mathrm{~A}_{2} \mathrm{~A}_{2}{ }^{*} \mathrm{~A}_{2} \mathrm{~A}_{2}$	$\mathrm{p}_{22}{ }^{2}$
Total	1.0

Mendelian Segregation: Offspring Genotype Frequencies

Offspring

$\begin{array}{ccc}\text { Mating } & \text { Frequency } & \mathbf{A}_{1} \mathbf{A}_{\mathbf{1}} \\ \mathrm{A}_{1} \mathrm{~A}_{1}{ }^{*} \mathrm{~A}_{1} \mathrm{~A}_{1} & \mathrm{p}_{11}{ }^{2} & \mathrm{p}_{11}{ }^{2}\end{array}$
$A_{1} A_{1}{ }^{*} A_{1} A_{2} \quad 2 p_{11} p_{12} \quad p_{11} p_{12} \quad p_{11} p_{12}$
$\mathrm{A}_{1} \mathrm{~A}_{1}{ }^{*} \mathrm{~A}_{2} \mathrm{~A}_{2} \quad 2 \mathrm{p}_{11} \mathrm{p}_{22}$
$\mathrm{A}_{1} \mathrm{~A}_{2}{ }^{*} \mathrm{~A}_{1} \mathrm{~A}_{2} \quad \mathrm{p}_{12}{ }^{2}$
$1 / 4 \mathrm{p}_{12}{ }^{2}$
$1 / 2 p_{12}{ }^{2}$
$1 / 4 \mathrm{p}_{12}{ }^{2}$
$A_{1} A_{2}{ }^{*} A_{2} A_{2} \quad 2 p_{12} p_{22}$
$\mathrm{p}_{12} \mathrm{p}_{22}$
$p_{12} p_{22}$
$\mathrm{A}_{2} \mathrm{~A}_{2}{ }^{*} \mathrm{~A}_{2} \mathrm{~A}_{2}$
$\mathrm{p}_{22}{ }^{2}$
$\mathrm{p}_{22}{ }^{2}$

And now...

$$
\begin{aligned}
p_{11}^{\prime} & =p_{11}^{2}+p_{11} p_{12}+1 / 4 p_{12}^{2} \\
& =\left(p_{11}+1 / 2 p_{12}\right)^{2} \\
& =p_{1}^{2} \\
p_{22}^{\prime} & =p_{22}^{2}+p_{22} p_{12}+1 / 4 p_{12}^{2} \\
& =\left(p_{22}+1 / 2 p_{12}\right)^{2} \\
& =p_{2}^{2} \\
p_{12}^{\prime} & =2 p_{11} p_{22}+p_{11} p_{12}+p_{12} p_{22}+1 / 2 p_{12}^{2} \\
& =2\left(p_{11}+1 / 2 p_{12}\right)\left(p_{22}+1 / 2 p_{12}\right) \\
& =2 p_{1} p_{2}
\end{aligned}
$$

Conclusion

- Genotype frequencies are function of allele frequencies
- Equilibrium reached in one generation
- Independent of initial genotype frequencies
- Random mating, etc. required
- Conform to binomial expansion
- $\left(p_{1}+p_{2}\right)^{2}=p_{1}^{2}+2 p_{1} p_{2}+p_{2}^{2}$

A few more notes...

- Can be expanded to multiple alleles
- Expand $\left(p_{1}+p_{2}+p_{3}+\cdots+p_{k}\right)^{2}$
- Holds in almost all human populations
- Little inbreeding (typical F = ~0.005)
- Deviations can suggest:
- Problems with experimental assays
- Non-independence of observations
- Selection
- Disease locus

Heterozigosity

- Probability that two alleles will differ

$$
H=1-\sum p_{i}^{2}
$$

- For a equally frequent alleles

$$
H=1-\frac{1}{a}=\frac{a-1}{a}
$$

- Sometimes called "gene diversity"

PIC

- Probability that alleles of parent can be distinguished in offspring
- Botstein et al, 1980.
- Markers that could track dominant alleles
- Probability that parent will heterozygous and informative in relation to spouse

PIC - Definition

- In general:

$$
\text { PIC }=1-\sum_{i=1}^{n} p_{i}^{2}-\sum_{i=1}^{n} \sum_{j=i+1}^{n} 2\left(p_{i} p_{j}\right)^{2}
$$

- For a equally frequent alleles

$$
\text { PIC }=\frac{a-1}{a}-\frac{a-1}{a^{3}}
$$

- PIC <= H

Exercise

- ABO locus allele frequencies
- A - frequency 0.3
- B - frequency 0.1
- O - frequency 0.6
- Calculate genotype frequencies
- Calculate heterozygosity and PIC
- Calculate phenotype frequencies

NOD2 and Bowel Disease

- Leu1007fs
- Frame shift mutation at position 1007
- Frequency of about 5\%
- Disrupts gene
- Penetrance
$\begin{array}{llll}\text { - Genotype } & +/+ & -/+ & -/- \\ \text { - } P(\text { Crohn's } \mid G) & 0.1 \% & 0.2 \% & 3 \%\end{array}$
- Calculate frequency of -/- genotype in population and among patients...

