
Programming in C
Quick Start!

Biostatistics 615/815
Lecture 2

Last Lecture

Describe 3 algorithms for tackling the
connectivity problem

• Quick Find
• Quick Union
• Weighted Quick Union

Pictorial Comparison
Quick Find Quick Union Weighted

Quick Find in C
// Data Initialization
for (i = 0; i < N; i++)

a[i] = i;

// Loop through connections
while (scanf(" %d %d", &p, &q) == 2)

{
// Check that input is within bounds
if (p < 0 || p >= N || q < 0 || q >= N) continue;

// FIND operation
if (a[p] == a[q]) continue;

// UNION operation
set = a[p];
for (i = 0; i < N; i++)

if (a[i] == set)
a[i] = a[q];

printf("%d %d is a new connection\n", p, q);
}

Quick Union in C
// To start, place each element in its own group
for (i = 0; i < N; i++)

a[i] = i;

// Loop through connections
while (scanf(" %d %d", &p, &q) == 2)

{
// Check that input is within bounds
if (p < 0 || p >= N || q < 0 || q >= N) continue;

// FIND operation
for (i = a[p]; a[i] != i; i = a[i]) ;
for (j = a[q]; a[j] != j; j = a[j]) ;
if (i == j) continue;

// UNION operation
a[i] = j;

printf("%d %d is a new connection\n", p, q);
}

Weighted Quick Union in C
// Initialize groupings and weights
for (i = 0; i < N; i++)

weight[i] = 1, a[i] = i;

// Loop through connections
while (scanf(" %d %d", &p, &q) == 2)

{
// Check that input is within bounds
if (p < 0 || p >= N || q < 0 || q >= N) continue;

// FIND operation
for (i = a[p]; a[i] != i; i = a[i]) ;
for (j = a[q]; a[j] != j; j = a[j]) ;
if (i == j) continue;

// UNION operation
if (weight[i] < weight[j])

{ a[i] = j; weight[j] += weight[i]; }
else

{ a[j] = i; weight[i] += weight[j]; }

printf("%d %d is a new connection\n", p, q);
}

This Week

Basics of Programming in C
• General organization of C programs
• C function libraries

How to compile and debug C programs
• On Windows, with Visual Studio
• On Unix (and Macs!), with GCC / GDB

Brief History of C

C was developed by Dennis Ritchie at
Bell Labs (1969 – 72)
• Support the new UNIX operating system
• Successor to B and BCPL

Strongly typed language
Dynamic memory allocation
User defined data structures

The Modern C Language

Portable language
• C compilers are available for desktop computers,

mainframes and mobile phones

Very efficient

C++ is the successor to C
• Simplifies grouping of functions and related data

Anatomy of C Program

A collection of functions
• Receive a set of parameters
• Declare local variables
• Carry out processing
• Return a value

main() function
• Called to start the program

C libraries

Most programs are not built from scratch

Rely on pre-existing collections of functions
• e.g. the Standard C library

Header (.h) files describe functions in these
collections
• e.g. accessed through #include statements

A C function definition
type function(argument_list)

{
variable_declarations;

statements;
}

Each function has a type
Each function argument has a type
Each local variable has a type

A simple C program
/* C code is stored in .c or .cpp files */

#include <stdio.h>

int main()
{
printf(“Hello, I am a program\n”);

return 0;
}

Variables in C

Must be declared before use

Each variable has a specific type
• integer
• floating point
• character

Names are case-sensitive

Another C Program
#include <stdio.h>

int Multiply(int x, int y)
{
int product = x * y;

return product;
}

int main()
{
int x = 2;

printf(“%d * %d = %d\n”, x, x, Multiply(x, x));

return 0;
}

Basic Data Types in C

Integer data types
• int, long

Floating point data types
• float, double

Character types
• Char

Pointers and user-defined types are also available

Integers

For most purposes the int type will do
•unsigned int for strictly positive quantities
•long long data type for storing large integers

Typically, store up to 31 or 63 digits
• in base 2
• plus one digit for sign
• range is about -2.1 to 2.1 billion (32 bit)

Floating point numbers

Stored as exponent, mantissa and sign
• Representation varies between machines

Limited range and precision

0 1 0 0 0 0 0 0 0 1 0

sign exponent mantissa

Floating point data

Stored in exponential notation
• In base 2

Has limited accuracy
• Computing two similar quantities and evaluating their

difference can be especially inaccurate

Greater range than integer data
• Exact for small integers

Programming Constructs in C

Function definitions and calls

Compound statements

Flow-control
•if … else …
•do … while …
•while …
•for …

Compound Statements

C statements can be grouped with {}

Optionally, each compound statement
starts with local variable declarations

Individual statements separated by “;”

if … else …

if (expression)
statement1;

else
statement2;

When expression is true (or nonzero)
statement1 is executed; otherwise
statement2 is executed.

Example

void Compare(int a, int b)
{
if (a == b)

printf(“Values Match!\n”);
else

printf(“Values are different!\n”);
}

do … while …

do
statement;

while (expression);

statement is executed until expression
evaluates to false (or zero).
statement is executed is executed at least
once.

Example

/* Calculate precision of double */
double precision()

{
double e = 1.0, temp;

do {
e = e * 0.5;
temp = 1.0 + e;

} while (temp > 1.0);

return e * 2.0;
}

while …

while (expression)
statement;

statement is executed while
expression evaluates to true.
statement may never be executed.

Example

/* Calculate maximum integer */
double maximum_integer()

{
int a = 2, b = 1, bits = 1;

while (a > b)
{
b = a;
a = a + a;
bits++;
}

printf(“Looks like a %d-bit computer\n”, bits);

return b;
}

for
for (initialization; condition; increment)

statement;

Executes initialization.

While condition is true:
• Execute statement.
• Evaluate increment.

statement may never be executed.

Example
int search(int a[], int value, int start, int stop)

{
// Variable declarations
int i;

// Search through each item
for (i = start; i <= stop; i++)

if (value == a[i])
return i;

// Search failed
return -1;
}

break and continue

continue
• Re-evaluates loop condition.
• If not finished, start a new cycle.

break
• Stop looping early.

Some Standard C Libraries

Timetime.h
String manipulation functionsstring.h
Kitchen Sink!stdlib.h
Basic input / output functionsstdio.h
Common mathematical functionsmath.h
Information about integerslimits.h
Information about floating pointfloat.h
Information about charactersctype.h
FunctionalityHeader File

math.h, Mathematical Functions
double exp(double x);
• exponential of x

double log(double x);
• natural logarithm of x

double log10(double x);
• base-10 logarithm of x

double pow(double x, double y);
• x raised to power y

double sin(double x);
double cos(double x); …
• Standard trigonometric functions

double sqrt(double x);
• square root of x

double ceil(double x);
• smallest integer not

less than x
double floor(double x);
• largest integer not

greater than x
double fabs(double x);
• absolute value of x

Important Library Functions

<stdio.h>
• Input and output

<stdlib.h>
• Basic random numbers and memory allocation

Input / Output Functions

<stdio.h>
Default
•int printf(char * format, …);
•int scanf(char * format, …);

File based functions
•FILE * fopen(char * filename, char * mode);
•int fclose(FILE * file);
•int fprintf(FILE * file, char * format, …);
•int fscanf(FILE * file, char * format, …);

printf

Writes formatted output

Format string controls how arguments
are converted to text
• Parameters are printed as specied in % fields
•%[flags][width][.precision]type

• Otherwise, string is quoted

printf fields
Flags:
• “-” to left justify result
• “+” to show sign in positive numbers

Width
• Minimum number of characters to print

Precision
• Number of digits after decimal (for floating point)
• Maximum number of characters (for strings)

Type
• “s” for strings
• “d” for integers, “x” to print hexadecimal integers
• “f” for floating point, “e” for exponential notation, “g” for automatic

scanf

Reads formatted input

Format string defines input interpretation
• Each %[type] field is converted and stored

Arguments should be addresses of
variables where input is to be stored

scanf fields

Field types
• “s” for strings
• “d” for int variables
• “lld” for long long variables
• “f” for float variables
• “lf” for double variables

Example
#include <stdio.h>

int square(int x)
{
return x * x;
}

int main()
{
int number;

printf("Type a number:");
scanf("%d", &number);
printf("The square of %d is %d.\n", number, square(number));

return 0;
}

Opening and closing files
FILE * fopen(char * filename, char * type);
• Opens file with filename
• If type is “wt”, a text file is opened for writing
• If type is “rt”, a text file is opened for reading
• Types “rb” and “wb” are analogous for binary files
• Returns NULL on failure

int fclose(FILE * file);
• Closes file
• Returns 0 on success

Example
#include <stdio.h>

int square(int x)
{ return x * x; }

int main()
{
int number;
FILE * output;

printf("Type a number:");
scanf("%d", &number);

output = fopen("results.txt", "wt");
fprintf(output, "The square of %d is %d\n",

number, square(number));
fclose(output);

return 0;
}

Basic Random Numbers

<stdlib.h>

int rand()
• Sample a uniformly distributed random integer

between 0 and RAND_MAX

void srand(int seed)
• Select the sequence of random numbers

specified by seed

Weighted Quick Union in C
// Initialize random generator
srand(1234);

// Generate M random connections
while (count++ < M)

{
// Pick random elements to connect
p = rand() % N;
q = rand() % N;

// FIND operation
for (i = a[p]; a[i] != i; i = a[i]) ;
for (j = a[q]; a[j] != j; j = a[j]) ;
if (i == j) continue;

// UNION operation
if (weight[i] < weight[j])

{ a[i] = j; weight[j] += weight[i]; }
else

{ a[j] = i; weight[i] += weight[j]; }

printf("%d %d is a new connection\n", p, q);
}

Weighted Quick Union in C
// Initialize random generator
srand(1234);

// Generate M random connections
while (count++ < M)

{
// This method generates better randomness in many computers
p = (int) (rand() * 1.0 * N / (RAND_MAX + 1.0));
q = (int) (rand() * 1.0 * N / (RAND_MAX + 1.0));

// FIND operation
for (i = a[p]; a[i] != i; i = a[i]) ;
for (j = a[q]; a[j] != j; j = a[j]) ;
if (i == j) continue;

// UNION operation
if (weight[i] < weight[j])

{ a[i] = j; weight[j] += weight[i]; }
else

{ a[j] = i; weight[i] += weight[j]; }

printf("%d %d is a new connection\n", p, q);
}

Today

Organization of C programs

Basic data types

Standard libraries

Thursday: Executing C Code

C is a high level language
• Relatively easy to understand

Computer CPUs execute much more
detailed, "lower-level" instructions

A compiler performs the necessary
translation…

Working in a UNIX Environment

GCC / G++
• Compile code

GDB
• Debug and test code

GPROF
• Collect performance metrics

GCC

GCC is a free C compiler
• GNU C Compiler

Versions available for
• Linux
• Unix
• Mac
• Windows

Developed by Free Software Foundation

Working in a
Windows Environment

Good integrated toolsets exist

Good options include:
• Microsoft Visual Studio / Visual C++

• Discounted version available through the University

• Turbo C++ Explorer
• Free C/C++ compiler, www.turboexplorer.com

