
Merge Sort

Biostatistics 615/815
Lecture 9

Project Assignments

Project assignments sent out by e-mail

You have about 8 weeks to complete the
project

First step: come to office hours in the
next couple of weeks and sketch out a
plan for completing the project!

Scheduling …

We need to schedule our midterm

Review Session
• I propose Thursday, October 19

Mid-term Exam
• I propose Tuesday, October 24

Last Lecture: Quick Sort

Choose a partitioning element …

Organize array such that:
• All elements to the right are greater
• All elements to the left are smaller

Sort right and left sub-arrays independently

Quick Sort Summary

Divide and Conquer Algorithm
• Recursive calls can be “hidden”

Optimizations
• Choice of median
• Threshold for brute-force methods
• Limiting depth of recursion

Do you think quick sort is a stable sort?

C Code: QuickSort
void quicksort(Item a[], int start, int stop)

{
int i;

if (stop <= start) return;

i = partition(a, start, stop);
quicksort(a, start, i - 1);
quicksort(a, i + 1, stop);
}

C Code: Partitioning
int partition(Item a[], int start, int stop)

{
int up = start, down = stop – 1, part = a[stop];

if (stop <= start) return start;

while (true)
{
while (isLess(a[up], part))

up++;
while (isLess(part, a[down]) && (up < down))

down--;

if (up >= down) break;
Exchange(a[up], a[down]);
up++; down--;
}

Exchange(a[up], a[stop]);
return up;
}

Non-Recursive Quick Sort
void quicksort(Item a[], int start, int stop)

{
int i, s = 0, stack[64];

stack[s++] = start;
stack[s++] = stop;

while (s > 0)
{
stop = stack[--s];
start = stack[--s];
if (start >= stop) continue;

i = partition(a, start, stop);
if (i – start > stop – i)

{
stack[s++] = start; stack[s++] = i - 1;
stack[s++] = i + 1; stack[s++] = stop;
}

else {
stack[s++] = i + 1; stack[s++] = stop;
stack[s++] = start; stack[s++] = i - 1;
}

}
}

Selection

Problem of finding the kth smallest value in an
array

Simple solution would involve sorting the array
• Time proportional to N log N with Quick Sort

Possible to improve by taking into account that
only one element must fall into place
• Time proportional to N

C Code: Selection
// Places kth smallest element in the kth position
// within array. Could move other elements.
void select(Item * a, int start, int stop, int k)

{
int i;

if (start <= stop) return;

i = partition(a, start, stop);

if (i > k) select(a, start, i - 1);
if (i < k) select(a, i + 1, stop);
}

Merge Sort

Divide-And-Conquer Algorithm
• Divides a file in two halves
• Merges sorted halves

The “opposite” of quick sort

Requires additional storage

C Code: Merge Sort
void mergesort(Item a[], int start, int stop)

{
int m = (start + stop)/2;

if (stop <= start) return;

mergesort(a, start, m);
mergesort(a, m + 1, stop);
merge(a, start, m, stop);
}

Merge Pattern N = 21

Merging Sorted Arrays

Consider two arrays

Assume they are both in order

Can you think of a merging strategy?

Merging Two Sorted Arrays

void merge_arrays(Item merged[], Item
a[], int N, Item b[], int M)
{
int i = 0, j = 0, k;

for (k = 0; k < M + N; k++)
{
if (i == N)

{ merged[k] = b[j++];
continue; }

“In-Place” Merge

For sorting, we would like to:
• Starting with sorted halves
•a[start … m]
•a[m + 1 … end]

• Generate a sorted stretch
•a[start … end]

We would like an in-place merge, but…
• A true “in-place” merge is quite complicated

Abstract In-Place Merge

For caller, performs like in-place merge

Creates copies two sub-arrays
Replaces contents with merged results

C Code: Abstract In-place Merge
(First Attempt)

Item extra1[MAX_N];
Item extra2[MAX_N];

void merge(Item a[], int start, int m, int stop)
{
int i, j, k;

for (i = start; i <= m; i++)
extra1[i - start] = a[i];

for (i = m + 1; i <= stop; i++)
extra2[i – m - 1] = a[i];

merge_arrays(a + start, extra1, m – start + 1,
extra2, stop – m);

}

C Code: Abstract In-place Merge
(Second Attempt)

Item extra[MAX_N];

void merge(Item a[], int start, int m, int stop)
{
int i, j, k;

for (i = start; i <= stop; i++)
extra[i] = a[i];

for (i = k = start, j = m + 1; k <= stop; k++)
if (j<=stop && isLess(extra[j], extra[i]) || i>m)

a[k] = extra[j++];
else

a[k] = extra[i++];
}

Avoiding End-of-Input Check

a[min] … a[max] b[max] … b[min]

First Array Second Array

i j

At each point, compare elements i and j.

Then select the smallest element.

Move i or j towards the middle, as appropriate.

C Code: Abstract In-place Merge
(Third Attempt!)

void merge(Item a[], int start, int m, int stop)
{
int i, j, k;

for (i = start; i <= m; i++)
extra[i] = a[i];

for (j = m + 1; j <= stop; j++)
extra[m + 1 + stop – j] = a[j];

for (i = k = start, j = stop; k <= stop; k++)
if (isLess(extra[j], extra[i]))

a[k] = extra[j--];
else

a[k] = extra[i++];
}

Merge Sort in Action

Merge Sort Notes

Order N log N
• Number of comparisons independent of data
• Exactly log N rounds
• Each requires N comparisons

Merge sort is stable
Insertion sort for small arrays is helpful

Sedgewick’s Timings (secs)

426524241800,000

198237109400,000

9211152200,000

435324100,000

MergeSort*MergeSortQuickSortN

Array of floating point numbers; * using insertion for small arrays

Non-Recursive Merge Sort

First sort all sub-arrays of 1 element

Perform successive merges
• Merge results into sub-arrays of 2 elements
• Merge results into sub-arrays of 4 elements
• …

Bottom-Up Merge Sort
Item min(Item a, Item b)
{ return isLess(a,b) ? a : b; }

void mergesort(Item a[], int start, int stop)
{
int i, m;

for (m = 1; m < stop – start; m += m)
for (i = start; i < stop; i += m + m)
{
int from = i;
int mid = i + m – 1;
int to = min(i + m + m – 1, stop);

merge(a, from, mid, to);
}

}

Merging Pattern for N = 21

Sedgewick’s Timings (secs)

568524241800,000

267237109400,000

12711152200,000

595324100,000

Bottom-Up
MergeSort

Top-Down
MergeSort

QuickSortN

Array of floating point numbers

Automatic Memory Allocation

Defining large static arrays is not efficient
• Often, program will run on smaller datasets and the

arrays will just waste memory

A better way is to allocate and free memory as
needed

Create a “wrapper” function that takes care of
memory allocation and freeing

Merge Sort,
With Automatic Memory Allocation
Item * extra;

void sort(Item a[], int start, int stop)
{
// Nothing to do with less than one element
if (stop <= start) return;

// Allocate the required extra storage
extra = malloc(sizeof(Item) * (stop – start + 1));

// Merge and sort the data
mergesort(a, start, stop);

// Free memory once we are done with it
free(extra);
}

Today …

Quick Sort
Merge Sort

Unraveled Recursive Sorts

Contrasting approaches to divide and
conquer

Sorting Summary

Simple O(N2) sorts for very small datasets
• Insertion, Selection and Bubblesort

Improved, but more complex sort
• Shell sort

Very efficient N log N sorts
• Quick Sort (requires no additional storage)
• Merge Sort (requires a bit of additional memory)

Sorting Indexes
Generating an index is an alternative to sorting the raw
data

Allows us to keep track of many different orders

Can be faster when items are large

How it works:
• Leaves the array containing the data unchanged
• Generates an array where position i records position of the

ith smallest item in the original data

Example:
Indexing with Insertion Sort
void sort(int index[], Item a[], int start, int stop)
{
int i, j;

for (i = start; i <= stop; i++)
index[i] = i;

for (i = start + 1; i <= stop; i++)
for (j = i; j > start; j--)

if (isLess(a[index[j]], a[index[j-1]]))
Exchange(index[j-1], index[j])

else
break;

}

Next Lecture:
An Alternative to Sorting

We’ll see how to organize data so that it
can be searched …

And so the complexity of searching and
organizing the data is less than N log N

Cost: Doing this will require additional
memory

Recommended Reading

For QuickSort
• Sedgewick, Chapter 7
• Hoare (1962) Computer Journal 5:10-15.

For MergeSort
• Sedgewick, Chapter 8

