Random Number Generation

Biostatistics 615/815
Lecture 14
Homework 5, Question 1: Quick Sort Optimization ...
Homework 5, Question 1: Merge-Sort Optimization
Homework 5, Question 2:

- Comparison of Hashing Strategies
 - Linear hashing
 - Double hashing

- Interesting aspects:
 - Memory dramatically impacts performance
 - In double-hashing, it is important to choose the second hash function carefully:
 - Specifically, it is key to avoid that it might return the values 0, 1 and any multiple of the table size M
Today

- Random Number Generators
 - Key ingredient of statistical computing

- Discuss properties and defects of alternative generators
Some Uses of Random Numbers

- Simulating data
 - Evaluate statistical procedures
 - Evaluate study designs
 - Evaluate program implementations

- Controlling stochastic processes
 - Markov-Chain Monte-Carlo methods

- Selecting questions for exams
Random Numbers and Computers

- Most modern computers do not generate truly random sequences
- Instead, they can be programmed to produce *pseudo-random* sequences
 - These will behave the same as random sequences for a wide-variety of applications
Uniform Deviates

- Fall within specific interval (usually 0..1)
- Potential outcomes have equal probability

- Usually, one or more of these deviates are used to generate other types of random numbers
C Library Implementation

// RAND_MAX is the largest value returned by rand
// RAND_MAX is 32767 on MS VC++ and on Sun Workstations
// RAND_MAX is 2147483647 on my Linux server
#define RAND_MAX XXXXX

// This function generates a new pseudo-random number
int rand();

// This function resets the sequence of// pseudo-random numbers to be generated by rand
void srand(unsigned int seed);
Example Usage

```c
#include <stdlib.h>
#include <stdio.h>

int main()
{
  int i;

  printf("10 random numbers between 0 and %d\n", RAND_MAX);

  /* Seed the random-number generator with 
   * current time so that numbers will be 
   * different for every run. 
   */
  srand( (unsigned) time(NULL) );

  /* Display 10 random numbers. */
  for( i = 0; i < 10; i++ )
    printf( "  %6d\n", rand() );
}
```
Unfortunately ...

- Many library implementations of `rand()` are botched.

- Referring to an early IBM implementation, a computer consultant said …
 - We guarantee each number is random individually, but we don’t guarantee that more than one of them is random.
Good Advice

- Always use a random number generator that is known to produce “good quality” random numbers

- “Strange looking, apparently unpredictable sequences are not enough”
 - Park and Miller (1988) in Communications of the ACM provide several examples
Lehmer’s (1951) Algorithm

- Multiplicative linear congruential generator

 - \(I_{j+1} = aI_j \mod m \)

Where

- \(I_j \) is the \(j^{\text{th}} \) number in the sequence
- \(m \) is a large prime integer
- \(a \) is an integer \(2 \ldots m - 1 \)
To produce numbers in the interval 0..1:

- \(U_j = I_j / m \)

These will range between \(1/m \) and \(1 - 1/m \)
Example 1

- $l_{j+1} = 6 \cdot l_j \mod 13$

- Produces the sequence:
 - ... 1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1, ...

- Which includes all values 1..$m-1$ before repeating itself
Example 2

- $l_{j+1} = 7 \cdot l_j \mod 13$

- Produces the sequence:
 - ... 1, 7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2, 1 ...

- This sequence still has a full period, but looks a little less “random” ...
Example 3

- $l_{j+1} = 5 \cdot l_j \mod 13$

- Produces one of the sequences:
 - ... 1, 5, 12, 8, 1, ...
 - ... 2, 10, 11, 3, 2, ...
 - ... 4, 7, 9, 6, 4, ...

- In this case, if $m = 13$, $a = 5$ is a very poor choice
Practical Values for a and m

- Do not choose your own (dangerous!)
- Rely on values that are known to work.

- Good sources:
 - Numerical Recipes in C
 - Park and Miller (1988) Communications of the ACM

- We will use $a = 16807$ and $m = 2147483647$
A Random Number Generator

/* This implementation will not work in many systems, due to integer overflows */

static int seed = 1;

double Random()
{
 int a = 16807;
 int m = 2147483647; /* 2^31 – 1 */

 seed = (a * seed) % m;
 return seed / (double) m;
}

/* If this is working properly, starting with seed = 1, * the 10,000th call produces seed = 1043618065 */
A Random Number Generator

/* This implementation will not work in newer compilers that */
/* support 64-bit integer variables of type long long */

static long long seed = 1;

double Random()
{
 long long a = 16807;
 long long m = 2147483647; /* 2^31 – 1 */

 seed = (a * seed) % m;
 return seed / (double) m;
}

/* If this is working properly, starting with seed = 1, */
/* the 10,000th call produces seed = 1043618065 */
Many systems will not represent integers larger than 2^{32}

We need a practical calculation where:
- Results Cover nearly all possible integers
- Intermediate values do not exceed 2^{32}
The Solution

- Let \(m = aq + r \)

- Where
 - \(q = m / a \)
 - \(r = m \mod a \)
 - \(r < q \)

- Then
 \[
 aI_j \mod m = \begin{cases}
 a(I_j \mod q) - r[I_j / q] & \text{if } \geq 0 \\
 a(I_j \mod q) - r[I_j / q] + m & \text{otherwise}
 \end{cases}
 \]
Random Number Generator: A Portable Implementation

```c
#define RAND_A        16807
#define RAND_M        2147483647
#define RAND_Q        127773
#define RAND_R        2836
#define RAND_SCALE    (1.0 / RAND_M)

static int seed = 1;

double Random() {
    int k = seed / RAND_Q;

    seed = RAND_A * (seed - k * RAND_Q) - k * RAND_R;

    if (seed < 0) seed += RAND_M;

    return seed * (double) RAND_SCALE;
}
```
Reliable Generator

- Fast

- Some slight improvements possible:
 - Use $a = 48271$ ($q = 44488$ and $r = 3399$)
 - Use $a = 69621$ ($q = 30845$ and $r = 23902$)

- Still has some subtle weaknesses …
 - E.g. whenever a value $< 10^{-6}$ occurs, it will be followed by a value < 0.017, which is $10^{-6} \times \text{RAND}_A$
Further Improvements

- **Shuffle Output.**
 - Generate two sequences, and use one to permute the output of the other.

- **Sum Two Sequences.**
 - Generate two sequences, and return the sum of the two (modulus the period for either).
Example: Shuffling (Part I)

// Define RAND_A, RAND_M, RAND_Q, RAND_R as before
#define RAND_TBL 32
#define RAND_DIV (1 + (RAND_M - 1) / RAND_TBL)

static int random_next = 0;
static int random_tbl[RAND_TBL];

void SetupRandomNumbers(int seed)
{
 int j;

 if (seed == 0) seed = 1;

 for (j = RAND_TBL - 1; j >= 0; j--)
 {
 int k = seed / RAND_Q;
 seed = RAND_A * (seed - k * RAND_Q) - k * RAND_R;
 if (seed < 0) seed += RAND_M;
 random_tbl[j] = seed;
 }

 random_next = random_tbl[0];
}
Example: Shuffling (Part II)

double Random()
{
 // Generate the next number in the sequence
 int k = seed / RAND_Q, index;
 seed = RAND_A * (seed - k * RAND_Q) - k * RAND_R;
 if (seed < 0) seed += RAND_M;

 // Swap it for a previously generated number
 index = random_next / RAND_DIV;
 random_next = random_tbl[index];
 random_tbl[index] = seed;

 // And return the shuffled result …
 return random_next * (double) RAND_SCALE;
}
Shuffling ...

- Shuffling improves things, however ...

- Requires additional storage ...

- If an extremely small value occurs (e.g. $< 10^{-6}$) it will be slightly correlated with other nearby extreme values.
Summing Two Sequences (I)

#define RAND_A1 40014
#define RAND_M1 2147483563
#define RAND_Q1 53668
#define RAND_R1 12211

#define RAND_A2 40692
#define RAND_M2 2147483399
#define RAND_Q2 52744
#define RAND_R2 3791

#define RAND_SCALE1 (1.0 / RAND_M1)
Summing Two Sequences (II)

```c
static int seed1 = 1, seed2 = 1;

double Random()
{
    int k, result;

    k = seed1 / RAND_Q1;
    seed1 = RAND_A1 * (seed1 - k * RAND_Q1) - k * RAND_R1;
    if (seed1 < 0) seed1 += RAND_M1;

    k = seed2 / RAND_Q2;
    seed2 = RAND_A2 * (seed2 - k * RAND_Q2) - k * RAND_R2;
    if (seed2 < 0) seed2 += RAND_M2;

    result = seed1 - seed2;
    if (result < 1) result += RAND_M1 - 1;

    return result * (double) RAND_SCALE1;
}
```
Summing Two Sequences

- If the sequences are uncorrelated, we can do no harm:
 - If the original sequence is “random”, summing a second sequence will preserve the original randomness

- In the ideal case, the period of the combined sequence will be the least common multiple of the individual periods
Summing More Sequences

- It is possible to sum more sequences to increase randomness.

- One example is the Wichman Hill random number generator, where:
 - $A_1 = 171$, $M_1 = 30269$
 - $A_2 = 172$, $M_2 = 30307$
 - $A_3 = 170$, $M_3 = 30323$

- Values for each sequence are:
 - Scaled to the interval $(0,1)$
 - Summed
 - Integer part of sum is discarded
So far ...

- Uniformly distributed random numbers
 - Using Lehmer’s algorithm
 - Work well for carefully selected parameters

- “Randomness” can be improved:
 - Through shuffling
 - Summing two sequences
 - Or both (see Numerical Recipes for an example)
Random Numbers in R

- In R, multiple generators are supported

- To select a specific sequence use:
 - `RNGkind()` -- select algorithm
 - `RNGversion()` -- mimics older R versions
 - `set.seed()` -- selects specific sequence

- Use `help(RNGkind)` for details
Random Numbers in R

- Many custom functions:
 - `runif(n, min = 0, max = 1)`
 - `rnorm(n, mean = 0, sd = 1)`
 - `rt(n, df)`
 - `rchisq(n, df, ncp = 0)`
 - `rf(n, df1, df2)`
 - `rexp(n, rate = 1)`
 - `rgamma(n, shape, rate = 1)`
Sampling from Arbitrary Distributions

The general approach for sampling from an arbitrary distribution is to:

- Define
 - Cumulative density function $F(x)$
 - Inverse cumulative density function $F^{-1}(x)$

- Sample $x \sim U(0,1)$
- Evaluate $F^{-1}(x)$
Example: Exponential Distribution

- Consider:
 - \(f(x) = e^{-x} \)
 - \(F(x) = 1 - e^{-x} \)
 - \(F^{-1}(y) = -\ln(1 - y) \)

```c
double RandomExp()
{
    return -log(Random());
}
```
To sample from a discrete set of outcomes, use:

```c
int SampleCategorical(int outcomes, double *probs) {
    double prob = Random();
    int outcome = 0;

    while (outcome + 1 < outcomes && prob > probs[outcome]) {
        prob -= probs[outcome];
        outcome++;
    }

    return outcome;
}
```
More Useful Examples

- Numerical Recipes in C has additional examples, including algorithms for sampling from normal and gamma distributions
The Mersenne Twister

- Current gold standard random generator

- Web: www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
 - Or Google for “Mersenne Twister”

- Has a very long period \(2^{19937} - 1\)
- Equi-distributed in up to 623 dimensions
Recommended Reading

- Numerical Recipes in C
 - Chapters 7.1 – 7.3

- Park and Miller (1998)
 “Random Number Generators: Good Ones Are Hard To Find”
 Communications of the ACM
Implementation Without Division

- Let \(a = 16807 \) and \(m = 2147483647 \)

- It is actually possible to implement Park-Miller generator without any divisions
 - Division is 20-40x slower than other operations

- Solution proposed by D. Carta (1990)
A Random Number Generator

/* This implementation is very fast, because there is no division */

static unsigned int seed = 1;
int RandomInt()
{
 // After calculation below, (hi << 16) + lo = seed * 16807
 unsigned int lo = 16807 * (seed & 0xFFFF); // Multiply lower 16 bits by 16807
 unsigned int hi = 16807 * (seed >> 16); // Multiply higher 16 bits by 16807

 // After these lines, lo has the bottom 31 bits of result, hi has bits 32 and up
 lo += (hi & 0x7FFF) << 16; // Combine lower 15 bits of hi with lo’s upper bits
 hi >>= 15; // Discard the lower 15 bits of hi

 // value % (2^{31} - 1)) = ((2^{31}) * hi + lo) % (2^{31} - 1)
 // = ((2^{31} - 1) * hi + hi + lo) % (2^{31}-1)
 // = (hi + lo) % (2^{31} - 1)
 lo += hi;

 // No division required, since hi + lo is always < 2^{32} - 2
 if (lo > 2147483647) lo -= 2147483647;

 return (seed = lo);
}