Random Number Generation

Biostatistics 615/815
Lecture 14

Homework 5, Question 1: Quick Sort Optimization ...

Homework 5, Question 1: Merge-Sort Optimization

Homework 5, Question 2:

- Comparison of Hashing Strategies
- Linear hashing
- Double hashing
- Interesting aspects:
- Memory dramatically impacts performance
- In double-hashing, it is important to choose the second hash function carefully:
- Specifically, it is key to avoid that it might return the values 0,1 and any multiple of the table size M

Today

- Random Number Generators
- Key ingredient of statistical computing
- Discuss properties and defects of alternative generators

Some Uses of Random Numbers

- Simulating data
- Evaluate statistical procedures
- Evaluate study designs
- Evaluate program implementations
- Controlling stochastic processes
- Markov-Chain Monte-Carlo methods
- Selecting questions for exams

Random Numbers and Computers

- Most modern computers do not generate truly random sequences
- Instead, they can be programmed to produce pseudo-random sequences
- These will behave the same as random sequences for a wide-variety of applications

Uniform Deviates

- Fall within specific interval (usually 0..1)
- Potential outcomes have equal probability
- Usually, one or more of these deviates are used to generate other types of random numbers

C Library Implementation

// RAND_MAX is the largest value returned by rand
// RAND_MAX is 32767 on MS VC++ and on Sun Workstations
// RAND_MAX is 2147483647 on my Linux server
\#define RAND_MAX XXXXX
// This function generates a new pseudo-random number int rand();
// This function resets the sequence of
// pseudo-random numbers to be generated by rand void srand(unsigned int seed);

Example Usage

```
#include <stdlib.h>
#include <stdio.h>
int main()
    {
    int i;
    printf("10 random numbers between 0 and %d\n", RAND_MAX);
    /* Seed the random-number generator with
        * current time so that numbers will be
        * different for every run.
        */
    srand( (unsigned) time(NULL) );
    /* Display 10 random numbers. */
    for( i = 0; i < 10; i++ )
        printf( " %6d\n", rand() );
    }
```


Unfortunately ...

- Many library implementations of rand () are botched
- Referring to an early IBM implementation, a computer consultant said ...
- We guarantee each number is random individually, but we don't guarantee that more than one of them is random.

Good Advice

- Always use a random number generator that is known to produce "good quality" random numbers
"Strange looking, apparently unpredictable sequences are not enough"
- Park and Miller (1988) in Communications of the ACM provide several examples

Lehmer's (1951) Algorithm

- Multiplicative linear congruential generator
- $I_{j+1}=a l_{j} \bmod m$
- Where
${ }^{-} I_{j}$ is the $j^{\text {th }}$ number in the sequence
- m is a large prime integer
- a is an integer 2 .. m - 1

Rescaling

To produce numbers in the interval 0..1:

- $\mathrm{U}_{\mathrm{j}}=\mathrm{I}_{\mathrm{j}} / \mathrm{m}$

These will range between $1 / m$ and $1-1 / m$

Example 1

$-I_{j+1}=6 I_{j} \bmod 13$

- Produces the sequence:
- ... 1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1, ...
- Which includes all values 1 .. m-1 before repeating itself

Example 2

- $I_{j+1}=7 I_{j} \bmod 13$
- Produces the sequence:
- ... 1, 7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2, 1 ...

This sequence still has a full period, but looks a little less "random" ...

Example 3

- $I_{j+1}=5 I_{j} \bmod 13$
- Produces one of the sequences:
- ... 1, 5, 12, 8, 1, ...
- ... 2, 10, 11, 3, 2, ...
- ... 4, 7, 9, 6, 4, ...
- In this case, if $\mathrm{m}=13, \mathrm{a}=5$ is a very poor choice

Practical Values for a and m

- Do not choose your own (dangerous!)
- Rely on values that are known to work.
- Good sources:
- Numerical Recipes in C
- Park and Miller (1988) Communications of the ACM
- We will use $a=16807$ and $m=2147483647$

A Random Number Generator

```
/* This implementation will not work in
    * many systems, due to integer overflows
    */
static int seed = 1;
double Random()
    {
        int a = 16807;
        int m = 2147483647; /* 2^31 - 1 */
        seed = (a * seed) % m;
        return seed / (double) m;
        }
/* If this is working properly, starting with seed = 1,
    * the 10,000th call produces seed = 1043618065
    */
```


A Random Number Generator

```
/* This implementation will not work in newer compilers that
    * support 64-bit integer variables of type long long
    */
static long long seed = 1;
double Random()
    {
    long long a = 16807;
    long long m = 2147483647; /* 2^31 - 1 */
        seed = (a * seed) % m;
        return seed / (double) m;
        }
/* If this is working properly, starting with seed = 1,
    * the 10,000th call produces seed = 1043618065
    */
```


Practical Computation

- Many systems will not represent integers larger than 2^{32}
- We need a practical calculation where:
- Results Cover nearly all possible integers
- Intermediate values do not exceed 2^{32}

The Solution

- Let $m=a q+r$
- Where
- $q=m / a$
- $r=m \bmod a$
- $r<q$

Then $\quad a I_{j} \bmod m=\left\{\begin{array}{cc}a\left(I_{j} \bmod q\right)-r\left[I_{j} / q\right] & \text { if } \geq 0 \\ a\left(I_{j} \bmod q\right)-r\left[I_{j} / q\right]+m & \end{array}\right.$

Random Number Generator: A Portable Implementation

```
#define RAND_A 16807
#define RAND_M 2147483647
#define RAND_Q 127773
#define RAND_R 2836
#define RAND_SCALE (1.0 / RAND_M)
static int seed = 1;
double Random()
    {
    int k = seed / RAND_Q;
    seed = RAND_A * (seed - k * RAND_Q) - k * RAND_R;
    if (seed < 0) seed += RAND_M;
    return seed * (double) RAND_SCALE;
    }
```


Reliable Generator

- Fast
- Some slight improvements possible:
- Use $a=48271$ ($q=44488$ and $r=3399$)
- Use $a=69621$ ($q=30845$ and $r=23902$)
- Still has some subtle weaknesses ...
- E.g. whenever a value $<10^{-6}$ occurs, it will be followed by a value < 0.017 , which is 10^{-6} * RAND_A

Further Improvements

- Shuffle Output.
- Generate two sequences, and use one to permute the output of the other.
- Sum Two Sequences.
- Generate two sequences, and return the sum of the two (modulus the period for either).

Example: Shuffling (Part I)

```
// Define RAND_A, RAND_M, RAND_Q, RAND_R as before
#define RAND_TBL 32
#define RAND_DIV (1 + (RAND_M - 1) / RAND_TBL)
static int random_next = 0;
static int random_tbl[RAND_TBL];
void SetupRandomNumbers(int seed)
    {
    int j;
    if (seed == 0) seed = 1;
    for (j = RAND_TBL - 1; j >= 0; j--)
        {
        int k = seed / RAND_Q;
        seed = RAND_A * (seed - k * RAND_Q) - k * RAND_R;
        if (seed < 0) seed += RAND_M;
        random_tbl[j] = seed;
        }
    random_next = random_tbl[0];
    }
```


Example: Shuffling (Part II)

double Random()
\{
// Generate the next number in the sequence
int $k=$ seed / RAND_Q, index;
seed = RAND_A * (seed - k * RAND_Q) - k * RAND_R;
if (seed < 0) seed += RAND_M;
// Swap it for a previously generated number
index = random_next / RAND_DIV;
random_next = random_tbl[index];
random_tbl[index] = seed;
// And return the shuffled result ... return random_next * (double) RAND_SCALE; \}

Shuffling ...

- Shuffling improves things, however ...
- Requires additional storage ...
- If an extremely small value occurs (e.g. $<10^{-6}$) it will be slightly correlated with other nearby extreme values.

Summing Two Sequences (I)

\#define RAND_A1 40014
\#define RAND_M1 2147483563
\#define RAND_Q1 53668
\#define RAND_R1 12211
\#define RAND_A2 40692
\#define RAND_M2 2147483399
\#define RAND_Q2 52744
\#define RAND_R2 3791
\#define RAND_SCALE1 (1.0 / RAND_M1)

Summing Two Sequences (II)

```
static int seed1 = 1, seed2 = 1;
```

```
double Random()
```

 \{
 int \(k\), result;
 k = seed1 / RAND_Q1;
 seed1 \(=\) RAND_A1 * (seed1 - k * RAND_Q1) - k * RAND_R1;
 if (seed1 < 0) seed1 += RAND_M1;
 k = seed2 / RAND_Q2;
 seed2 \(=\) RAND_A2 * (seed2 - k * RAND_Q2) - k * RAND_R2;
 if (seed2 < 0) seed2 += RAND_M2;
 result \(=\) seed1 - seed2;
 if (result < 1) result += RAND_M1 - 1;
 return result * (double) RAND_SCALE1;
 \}

Summing Two Sequences

- If the sequences are uncorrelated, we can do no harm:
- If the original sequence is "random", summing a second sequence will preserve the original randomness
- In the ideal case, the period of the combined sequence will be the least common multiple of the individual periods

Summing More Sequences

- It is possible to sum more sequences to increase randomness
- One example is the Wichman Hill random number generator, where:
- $\mathrm{A} 1=171, \mathrm{M} 1=30269$
- $\mathrm{A} 2=172, \mathrm{M} 2=30307$
- $\mathrm{A} 3=170, \mathrm{M} 3=30323$
- Values for each sequence are:
- Scaled to the interval $(0,1)$
- Summed
- Integer part of sum is discarded

So far ...

- Uniformly distributed random numbers
- Using Lehmer's algorithm
- Work well for carefully selected parameters
- "Randomness" can be improved:
- Through shuffling
- Summing two sequences
- Or both (see Numerical Recipes for an example)

Random Numbers in R

- In R, multiple generators are supported

To select a specific sequence use:
${ }^{\circ}$ RNGkind () -- select algorithm

- RNGversion() -- mimics older R versions
${ }^{\bullet}$ set. seed() -- selects specific sequence
- Use help(RNGkind) for details

Random Numbers in R

- Many custom functions:
- runif(n, min = 0, max = 1)
${ }^{\bullet} \operatorname{rnorm}(\mathrm{n}$, mean $=0, ~ s d=1)$
${ }^{\circ} r t(n, d f)$
- rchisq(n, df, ncp = 0)
- rf(n, df1, df2)
- rexp(n, rate = 1)
- rgamma(n, shape, rate = 1)

Sampling from Arbitrary Distributions

- The general approach for sampling from an arbitrary distribution is to:
- Define
- Cumulative density function $F(x)$
- Inverse cumulative density function $\mathrm{F}^{-1}(\mathrm{x})$
- Sample $x \sim U(0,1)$
- Evaluate $\mathrm{F}^{-1}(\mathrm{x})$

Example: Exponential Distribution

- Consider:
- $f(x)=e^{-x}$
- $F(x)=1-e^{-x}$
- $F^{-1}(y)=-\ln (1-y)$
double RandomExp()
\{
return -log(Random());
\}

Example: Categorical Data

- To sample from a discrete set of outcomes, use:
int SampleCategorical(int outcomes, double * probs)
\{
double prob = Random();
int outcome = 0;
while (outcome + $1<$ outcomes \&\& prob > probs[outcome])
\{
prob -= probs[outcome];
outcome++;
\}
return outcome;
\}

More Useful Examples

- Numerical Recipes in C has additional examples, including algorithms for sampling from normal and gamma distributions

The Mersenne Twister

- Current gold standard random generator
- Web: www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
- Or Google for "Mersenne Twister"
- Has a very long period (2^{19937} - 1)
- Equi-distributed in up to 623 dimensions

Recommended Reading

- Numerical Recipes in C
${ }^{\bullet}$ Chapters 7.1 - 7.3
- Park and Miller (1998)
"Random Number Generators:
Good Ones Are Hard To Find"
Communications of the ACM

Implementation Without Division

- Let $a=16807$ and $m=2147483647$
- It is actually possible to implement ParkMiller generator without any divisions
- Division is 20-40x slower than other operations
- Solution proposed by D. Carta (1990)

A Random Number Generator

```
/* This implementation is very fast, because there is no division */
static unsigned int seed = 1;
int RandomInt()
    {
    // After calculation below, (hi << 16) + lo = seed * 16807
    unsigned int lo = 16807 * (seed & 0xFFFF); // Multiply lower 16 bits by 16807
    unsigned int hi = 16807 * (seed >> 16); // Multiply higher 16 bits by 16807
    // After these lines, lo has the bottom 31 bits of result, hi has bits 32 and up
    lo += (hi & 0x7FFF) << 16; // Combine lower 15 bits of hi with lo's upper bits
    hi >>= 15; // Discard the lower 15 bits of hi
    // value % (2 (21 - 1)) = ((231) * hi + lo) % (2 (21 - 1)
    // = ((2 21 - 1) * hi + hi + lo) % (2 (21-1)
    // = (hi + lo) % (231 - 1)
    lo += hi;
    // No division required, since hi + lo is always < 232 - 2
    if (lo > 2147483647) lo -= 2147483647;
    return (seed = lo);
    }
```

