
Random Number
Generation

Biostatistics 615/815
Lecture 14

Homework 5, Question 1:
Quick Sort Optimization …

6

8

10

12

0 10 20 30 40 50 60

M

Ti
m

e
(m

s)

100

133

167

200

Th
ou

sa
nd

s

C
om

pa
ris

on
s

Homework 5, Question 1:
Merge-Sort Optimization

8

10

12

14

0 10 20 30 40 50 60

M

Ti
m

e
(m

s)

100

125

150

175

200

Th
ou

sa
nd

s

C
om

pa
ris

on
s

Homework 5, Question 2:

Comparison of Hashing Strategies
• Linear hashing
• Double hashing

Interesting aspects:
• Memory dramatically impacts performance
• In double-hashing, it is important to choose the

second hash function carefully:
• Specifically, it is key to avoid that it might return the

values 0, 1 and any multiple of the table size M

Today

Random Number Generators
• Key ingredient of statistical computing

Discuss properties and defects of
alternative generators

Some Uses of Random Numbers

Simulating data
• Evaluate statistical procedures
• Evaluate study designs
• Evaluate program implementations

Controlling stochastic processes
• Markov-Chain Monte-Carlo methods

Selecting questions for exams

Random Numbers and Computers

Most modern computers do not generate
truly random sequences

Instead, they can be programmed to
produce pseudo-random sequences
• These will behave the same as random

sequences for a wide-variety of applications

Uniform Deviates

Fall within specific interval (usually 0..1)
Potential outcomes have equal probability

Usually, one or more of these deviates
are used to generate other types of
random numbers

C Library Implementation

// RAND_MAX is the largest value returned by rand
// RAND_MAX is 32767 on MS VC++ and on Sun Workstations
// RAND_MAX is 2147483647 on my Linux server
#define RAND_MAX XXXXX

// This function generates a new pseudo-random number
int rand();

// This function resets the sequence of
// pseudo-random numbers to be generated by rand
void srand(unsigned int seed);

Example Usage
#include <stdlib.h>
#include <stdio.h>

int main()
{
int i;

printf(“10 random numbers between 0 and %d\n”, RAND_MAX);

/* Seed the random-number generator with
* current time so that numbers will be
* different for every run.
*/
srand((unsigned) time(NULL));

/* Display 10 random numbers. */
for(i = 0; i < 10; i++)

printf(" %6d\n", rand());
}

Unfortunately …

Many library implementations of rand()
are botched

Referring to an early IBM implementation,
a computer consultant said …
• We guarantee each number is random individually,

but we don’t guarantee that more than one of them
is random.

Good Advice

Always use a random number generator
that is known to produce “good quality”
random numbers

“Strange looking, apparently unpredictable
sequences are not enough”
• Park and Miller (1988) in Communications of the

ACM provide several examples

Lehmer’s (1951) Algorithm

Multiplicative linear congruential generator

• Ij+1
= aIj mod m

Where
• Ij is the jth number in the sequence
• m is a large prime integer
• a is an integer 2 .. m - 1

Rescaling

To produce numbers in the interval 0..1:

• Uj = Ij / m

These will range between 1/m and 1 – 1/m

Example 1

Ij+1 = 6 Ij mod 13

Produces the sequence:
• … 1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1, …

Which includes all values 1 .. m-1 before
repeating itself

Example 2

Ij+1 = 7 Ij mod 13

Produces the sequence:
• … 1, 7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2, 1 …

This sequence still has a full period, but
looks a little less “random” …

Example 3

Ij+1 = 5 Ij mod 13

Produces one of the sequences:
• … 1, 5, 12, 8, 1, …
• … 2, 10, 11, 3, 2, …
• … 4, 7, 9, 6, 4, …

In this case, if m = 13, a = 5 is a very poor
choice

Practical Values for a and m

Do not choose your own (dangerous!)
Rely on values that are known to work.

Good sources:
• Numerical Recipes in C
• Park and Miller (1988) Communications of the ACM

We will use a = 16807 and m = 2147483647

A Random Number Generator
/* This implementation will not work in
* many systems, due to integer overflows
*/

static int seed = 1;
double Random()

{
int a = 16807;
int m = 2147483647; /* 2^31 – 1 */

seed = (a * seed) % m;
return seed / (double) m;
}

/* If this is working properly, starting with seed = 1,
* the 10,000th call produces seed = 1043618065
*/

A Random Number Generator
/* This implementation will not work in newer compilers that
* support 64-bit integer variables of type long long
*/

static long long seed = 1;
double Random()

{
long long a = 16807;
long long m = 2147483647; /* 2^31 – 1 */

seed = (a * seed) % m;
return seed / (double) m;
}

/* If this is working properly, starting with seed = 1,
* the 10,000th call produces seed = 1043618065
*/

Practical Computation

Many systems will not represent integers
larger than 232

We need a practical calculation where:
• Results Cover nearly all possible integers
• Intermediate values do not exceed 232

The Solution

Let m = aq + r

Where
• q = m / a
• r = m mod a
• r < q

Then
0

]/[)mod(
]/[)mod(

mod
≥

⎩
⎨
⎧

+−
−

=
if

mqIrqIa
qIrqIa

maI
jj

jj
j

Random Number Generator:
A Portable Implementation

#define RAND_A 16807
#define RAND_M 2147483647
#define RAND_Q 127773
#define RAND_R 2836
#define RAND_SCALE (1.0 / RAND_M)

static int seed = 1;

double Random()
{
int k = seed / RAND_Q;

seed = RAND_A * (seed – k * RAND_Q) – k * RAND_R;

if (seed < 0) seed += RAND_M;

return seed * (double) RAND_SCALE;
}

Reliable Generator

Fast

Some slight improvements possible:
• Use a = 48271 (q = 44488 and r = 3399)
• Use a = 69621 (q = 30845 and r = 23902)

Still has some subtle weaknesses …
• E.g. whenever a value < 10-6 occurs, it will be followed

by a value < 0.017, which is 10-6 * RAND_A

Further Improvements

Shuffle Output.
• Generate two sequences, and use one to

permute the output of the other.

Sum Two Sequences.
• Generate two sequences, and return the sum

of the two (modulus the period for either).

Example: Shuffling (Part I)
// Define RAND_A, RAND_M, RAND_Q, RAND_R as before
#define RAND_TBL 32
#define RAND_DIV (1 + (RAND_M – 1) / RAND_TBL)

static int random_next = 0;
static int random_tbl[RAND_TBL];

void SetupRandomNumbers(int seed)
{
int j;

if (seed == 0) seed = 1;

for (j = RAND_TBL – 1; j >= 0; j--)
{
int k = seed / RAND_Q;
seed = RAND_A * (seed – k * RAND_Q) – k * RAND_R;
if (seed < 0) seed += RAND_M;
random_tbl[j] = seed;
}

random_next = random_tbl[0];
}

Example: Shuffling (Part II)
double Random()

{
// Generate the next number in the sequence
int k = seed / RAND_Q, index;
seed = RAND_A * (seed – k * RAND_Q) – k * RAND_R;
if (seed < 0) seed += RAND_M;

// Swap it for a previously generated number
index = random_next / RAND_DIV;
random_next = random_tbl[index];
random_tbl[index] = seed;

// And return the shuffled result …
return random_next * (double) RAND_SCALE;
}

Shuffling …

Shuffling improves things, however …

Requires additional storage …

If an extremely small value occurs (e.g.
< 10-6) it will be slightly correlated with
other nearby extreme values.

Summing Two Sequences (I)
#define RAND_A1 40014
#define RAND_M1 2147483563
#define RAND_Q1 53668
#define RAND_R1 12211

#define RAND_A2 40692
#define RAND_M2 2147483399
#define RAND_Q2 52744
#define RAND_R2 3791

#define RAND_SCALE1 (1.0 / RAND_M1)

Summing Two Sequences (II)
static int seed1 = 1, seed2 = 1;

double Random()
{
int k, result;

k = seed1 / RAND_Q1;
seed1 = RAND_A1 * (seed1 – k * RAND_Q1) – k * RAND_R1;
if (seed1 < 0) seed1 += RAND_M1;

k = seed2 / RAND_Q2;
seed2 = RAND_A2 * (seed2 – k * RAND_Q2) – k * RAND_R2;
if (seed2 < 0) seed2 += RAND_M2;

result = seed1 – seed2;
if (result < 1) result += RAND_M1 – 1;

return result * (double) RAND_SCALE1;
}

Summing Two Sequences

If the sequences are uncorrelated, we can do
no harm:
• If the original sequence is “random”, summing a

second sequence will preserve the original
randomness

In the ideal case, the period of the combined
sequence will be the least common multiple of
the individual periods

Summing More Sequences
It is possible to sum more sequences to increase randomness

One example is the Wichman Hill random number generator,
where:
• A1 = 171, M1 = 30269
• A2 = 172, M2 = 30307
• A3 = 170, M3 = 30323

Values for each sequence are:
• Scaled to the interval (0,1)
• Summed
• Integer part of sum is discarded

So far …

Uniformly distributed random numbers
• Using Lehmer’s algorithm
• Work well for carefully selected parameters

“Randomness” can be improved:
• Through shuffling
• Summing two sequences
• Or both (see Numerical Recipes for an

example)

Random Numbers in R

In R, multiple generators are supported

To select a specific sequence use:
•RNGkind() -- select algorithm
•RNGversion() -- mimics older R versions
•set.seed() -- selects specific sequence

Use help(RNGkind) for details

Random Numbers in R

Many custom functions:
•runif(n, min = 0, max = 1)
•rnorm(n, mean = 0, sd = 1)
•rt(n, df)
•rchisq(n, df, ncp = 0)
•rf(n, df1, df2)
•rexp(n, rate = 1)
•rgamma(n, shape, rate = 1)

Sampling from Arbitrary
Distributions

The general approach for sampling from an
arbitrary distribution is to:

Define
• Cumulative density function F(x)
• Inverse cumulative density function F-1(x)

Sample x ~ U(0,1)
Evaluate F-1(x)

Example: Exponential Distribution

Consider:
• f (x) = e-x

• F (x) = 1 – e-x

• F-1(y) = -ln(1 – y)

double RandomExp()
{
return –log(Random());
}

Example: Categorical Data
To sample from a discrete set of outcomes, use:

int SampleCategorical(int outcomes, double * probs)
{
double prob = Random();
int outcome = 0;

while (outcome + 1 < outcomes && prob > probs[outcome])
{
prob -= probs[outcome];
outcome++;
}

return outcome;
}

More Useful Examples

Numerical Recipes in C has additional
examples, including algorithms for
sampling from normal and gamma
distributions

The Mersenne Twister

Current gold standard random generator

Web: www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
• Or Google for “Mersenne Twister”

Has a very long period (219937 – 1)
Equi-distributed in up to 623 dimensions

Recommended Reading

Numerical Recipes in C
• Chapters 7.1 – 7.3

Park and Miller (1998)
“Random Number Generators:
Good Ones Are Hard To Find”
Communications of the ACM

Implementation Without Division

Let a = 16807 and m = 2147483647

It is actually possible to implement Park-
Miller generator without any divisions
• Division is 20-40x slower than other operations

Solution proposed by D. Carta (1990)

A Random Number Generator
/* This implementation is very fast, because there is no division */

static unsigned int seed = 1;
int RandomInt()

{
// After calculation below, (hi << 16) + lo = seed * 16807
unsigned int lo = 16807 * (seed & 0xFFFF); // Multiply lower 16 bits by 16807
unsigned int hi = 16807 * (seed >> 16); // Multiply higher 16 bits by 16807

// After these lines, lo has the bottom 31 bits of result, hi has bits 32 and up
lo += (hi & 0x7FFF) << 16; // Combine lower 15 bits of hi with lo’s upper bits
hi >>= 15; // Discard the lower 15 bits of hi

// value % (231 - 1)) = ((231) * hi + lo) % (231 – 1)
// = ((231 - 1) * hi + hi + lo) % (231-1)
// = (hi + lo) % (231 – 1)
lo += hi;

// No division required, since hi + lo is always < 232 - 2
if (lo > 2147483647) lo -= 2147483647;

return (seed = lo);
}

