Introduction to Numerical
Optimization

Biostatistics 615/815
Lecture 15

-~

Course I1s More Than Half Done!

~

If you have comments...

... they are very welcome
Lectures
Lecture notes
Weekly Homework
Midterm
Content

-~

Last Lecture

_

Computer generated “random” numbers

Linear congruential generators
Improvements through shuffling, summing

Importance of using validated generators

Beware of problems with the default rand()
function

-~

Today ...

~

Root finding

Minimization for functions of one variable

|deas:
Limits on accuracy
Local approximations

/

Numerical Optimization

_

Consider some function f(x)
e.g. Likelihood for some model ...

Find the value of x for which f takes a
maximum or minimum value

Maximization and minimization are equivalent
Replace f(x) with —f(x)

/

-~

Algorithmic Objectives

Solve problem...
Conserve CPU time
Conserve memory

Most often, the CPU time is dominated
by the cost of evaluating f(x)
Minimize the number of evaluations

/

The Minimization Problem

-
S
G o

e
e
e
e an e
R
i
el mema
e
i

&
R
o

e
e

e

e
A

sammEE e
o
e

-
i S
g

-~

Specific Objectives

_

Finding global minimum
The lowest possible value of the function
Extremely hard problem

Finding local minimum
Smallest value within finite neighborhood

/

-~

Typical Quality Checks

~

When solving an optimization problem it

IS good practice to check the quality of
the solution

Try different starting values ...

Perturb solution and repeat ...

/

-~

A Quick Detour

~

Consider the problem of finding zeros for f(x)

Assume that you know:
Point a where f(a) is positive
Point b where f(b) is negative
f(x) is continuous between aand b

How would you proceed to find x such that
f(x)=07?

/

-~

~

Root Finding in C

_

double zero(double (*func)(double), double 1o, double hi, double e)
{
while (1)
{
double d = hi — lo;
double point = lo + d * 0.5;
double fpoint = (*func)(point);

it (fpoint < 0.0)

{ d =10 — point; lo = point; }
else

{ d = point — hi; hi = point; }

iIf (fabs(d) < e |] fpoint == 0.0)
return point;

}

| /

-~

Improvements to Root Finding

_

Consider the following approximation:

£°(x) = f(a)+(x—a) f(bg‘ (@)

Select new trial point such that f*(x) is zero.

-~

~

Improved Root Finding in C

_

double zero (double (*func)(double), double lo, double hi, double e)

{

double flo = (*func)(lo);
double thi = (*func)(hi);
while (1)

{
double d = hi — lo;

double point = lo + d * flo /7 (flo — Thi);
double fpoint = (*func)(point);

it (fpoint < 0.0)

{ d = 1o — point; lo = point; flo = fpoint; }
else

{ d = point — hi; hi = point; fhi = fpoint; }

iIf (fabs(d) < e |] fpoint == 0.0)

return point;
+
+

-~

Performance Comparison

~

Find the zero for sin(x)
In the interval -11/4 to 11/2
Accuracy parameter set to 10

Bisection method used 17 calls to sin(x)

Approximation used 5 calls to sin(x)

/

-~

Program That Uses Root Finding

_

double zero (double (*func)(double), double lo, double hi, double e);

double function(double x)

{
return (4*x — 3);

}

int main(int argc, char ** argv)
{

double min = zero(my_ function, -5, +5, le-5);

printf(“Minimum for my function is %.3f at %.3f\n”’,
my function(min), min);
by

-~

Notes on Root Finding

\

_

The 2@ method we implemented is the
False Position Method

In the bisection method, the bracketing
interval is halved at each step

For well-behaved functions, the False
Position Method will converge faster, but
there is no performance guarantee

4 N

Questions on Root Finding

What care is required in setting precision?

How to set starting brackets for minimum®?
If the function was monotonic?
If there is a specific target interval?

What would happen for a function such as

_ f(x) =1/ (x = c) Y,

-~

Back to Numerical Optimization

Consider some function f(x)
e.g. Likelihood for some model ...

Find the value of x for which f takes a
maximum or minimum value

Maximization and minimization are equivalent
Replace f(x) with —f(x)

4 N

Notes from Root Finding

Introduces two useful ideas
Which can be applied to function minimization

Bracketing

Keep track of interval containing solution

Accuracy
\ Recognize that solution has limited precision /

\

Note on Accuracy

When estimating minima and bracketing

intervals, floating point accuracy must be
considered

In general, if the machine precision is €
the achievable accuracy is no more than

sqrt(e)

/

-~

Note on Accuracy lli

The error results from the second term in the
Taylor approximation:

f(x)= f(b)+% f(b)(x-b)’

For functions where higher order terms are
Important, accuracy could be even lower.

For example, the minimum for f(x) = 1 + x*is only
estimated to about 14

-~

Outline of Minimization Strategy

~

_

Part |

Bracket minimum

Part Il

Successively tighten bracketing interval

/

-~

Detailed Minimization Strategy

~

_

Find 3 points such that
a<b<c
f(b) < f(a) and f(b) < f(c)

Then search for minimum by
Selecting trial point in interval
Keep minimum and flanking points

/

-~

~

Minimization after Bracketing

(T

/Part |

Finding a Bracketing Interval

~

Consider two points
a, b
f(a) > f(b)

Take successively larger steps beyond b
until function starts increasing

/

4 A

Bracketing in C

#define SCALE 1.618

void bracket (double (*f)(double), double* a, double* b, double* c)

{
double fa = (*P)(*a);
double fb = (*F)(*b);
double fc = (*f)(*c = *b + SCALE * (*b - *a));
while (fb > fc)
{
*a = *b; fa = fb;
*b = *c; fb = fc;
*c = *b + SCALE * (*b - *a);
fc = (*F) (*c);
+
+

_ /

-~

~

Bracketing in C++

#define SCALE 1.618

void bracket (double (*f)(double), double & a, double & b, double & ¢)
{
double fa
double fb
double fc

cH@);
CtH();
(*F)(c = b + SCALE * (b - a));

while (fb > fc)

b; fa = fb;
c; fb = fc;
b + SCALE * (b - a);
c=(CH (©;

“w = 0O T DM

-~

Part Il:
Finding Minimum after Bracketing

~

Given 3 points such that
a<b<c
f(b) < f(a) and f(b) < f(c)

How do we select new trial point?

-~

Consider ...

~

_

® © ©

What is the best location for a new point X?

/

-~

Consider ...

_

@ 606 @

We want to minimize the size of the next
search interval which will be either
from Ato XorfromBtoC

/

Formulae ...

Segments will have length

1-w or w+z

\ We want to minimize worst case possibility so... /

4 A

Effectively ...

The optimal case Is
Z=1-2w

This gives

3-4/5
N

=0.38197
/

-~

Golden Search

-~

The Golden Ratio

_

Bracketing Triplet

®©®

©

/

4 A

The Golden Ratio

New Point

@ 06 0 6

e e
0.38196 0.38196

The number 0.38196 is related to the golden mean studied by
\ Pythagoras /

4 A

The Golden Ratio

New Bracketing Triplet

T e

0.38196
Alternative New Bracketing Triplet

; Tx c

-~

Golden Search

~

Reduces bracketing by ~40% after each
function evaluation

Performance is independent of the function

that is being minimized

Potentially, better schemes are possible

/

4 A

Golden Step

#define GOLD 0.38196
#define ZEPS le-10

double golden _step (double a, double b, double c)

{
double mid = (a + ¢c) * 0.5;

it (b > mid)
return GOLD * (a - b);

else
return GOLD * (c - b);

}

_ /

Golden Search

double golden_search(double (*func)(double),
double a, double b, double c, double e)

{
double fb = (*func)(b);

while (fabs(c - a) > fabs(b * e) + ZEPS)
{
double x = b + golden_step(a, b, ¢);
double fx = (*func)(X);

iIf (fx < fb)
{
iIT x>Db) { a
b = x; fb = fx;
}

else
iIT xX<b) {a

b; } else { ¢c =Db; }

X; yelse { c =x; }

}

return b;

}

-~

Further Improvements

As with root finding, performance can
Improve substantially when a local
approximation is used ...

However, a linear approximation won't
do in this case!

/

-~

Approximating The Function

~

_______ parabola through @ @ @
............... parabola through @ @ @

-~

Recommended Reading

_

Numerical Recipes in C (or C++)

Press, Teukolsky, Vetterling, Flannery
Chapters 10.0 — 10.2

Excellent resource for scientific computing

Online at

/

