
Introduction to Numerical 
Optimization

Biostatistics 615/815
Lecture 15



Course is More Than Half Done!

If you have comments…
… they are very welcome
• Lectures
• Lecture notes
• Weekly Homework 
• Midterm
• Content



Last Lecture

Computer generated “random” numbers

Linear congruential generators
• Improvements through shuffling, summing

Importance of using validated generators
• Beware of problems with the default rand()

function



Today …

Root finding

Minimization for functions of one variable

Ideas:
• Limits on accuracy
• Local approximations



Numerical Optimization

Consider some function f(x)
• e.g. Likelihood for some model …

Find the value of x for which f takes a 
maximum or minimum value

Maximization and minimization are equivalent
• Replace f(x) with –f(x)



Algorithmic Objectives

Solve problem…
• Conserve CPU time
• Conserve memory

Most often, the CPU time is dominated 
by the cost of evaluating f(x)
• Minimize the number of evaluations



The Minimization Problem



Specific Objectives

Finding global minimum
• The lowest possible value of the function
• Extremely hard problem

Finding local minimum
• Smallest value within finite neighborhood



Typical Quality Checks

When solving an optimization problem it 
is good practice to check the quality of 
the solution

Try different starting values …

Perturb solution and repeat …



A Quick Detour

Consider the problem of finding zeros for f(x)

Assume that you know:
• Point a where f(a) is positive
• Point b where f(b) is negative
• f(x) is continuous between a and b

How would you proceed to find x such that 
f(x)=0?



Root Finding in C
double zero(double (*func)(double), double lo, double hi, double e)

{
while (1)

{
double d = hi – lo;
double point = lo + d * 0.5;
double fpoint = (*func)(point);

if (fpoint < 0.0)
{ d = lo – point; lo = point; }

else
{ d = point – hi; hi = point; }

if (fabs(d) < e || fpoint == 0.0) 
return point;

}
}



Improvements to Root Finding

Consider the following approximation:

Select new trial point such that f*(x) is zero.

ab
afbfaxafxf

−
−

−+=
)()()()()(*



Improved Root Finding in C
double zero (double (*func)(double), double lo, double hi, double e)

{
double flo = (*func)(lo);
double fhi = (*func)(hi);
while (1)

{
double d = hi – lo;
double point = lo + d * flo / (flo – fhi);
double fpoint = (*func)(point);

if (fpoint < 0.0)
{ d = lo – point; lo = point; flo = fpoint; }

else
{ d = point – hi; hi = point; fhi = fpoint; }

if (fabs(d) < e || fpoint == 0.0) 
return point;

}
}



Performance Comparison

Find the zero for sin(x) 
• In the interval -π/4 to π/2
• Accuracy parameter set to 10-5

Bisection method used 17 calls to sin(x)

Approximation used 5 calls to sin(x)



Program That Uses Root Finding
double zero (double (*func)(double), double lo, double hi, double e);

double function(double x)
{
return (4*x – 3);
}

int main(int argc, char ** argv)
{
double min = zero(my_function, -5, +5, 1e-5);

printf(“Minimum for my function is %.3f at %.3f\n”,
my_function(min), min);

}



Notes on Root Finding

The 2nd method we implemented is the 
False Position Method

In the bisection method, the bracketing 
interval is halved at each step

For well-behaved functions, the False 
Position Method will converge faster, but 
there is no performance guarantee



Questions on Root Finding

What care is required in setting precision?

How to set starting brackets for minimum?
• If the function was monotonic?
• If there is a specific target interval?

What would happen for a function such as 
f(x) = 1 / (x – c)



Back to Numerical Optimization

Consider some function f(x)
• e.g. Likelihood for some model …

Find the value of x for which f takes a 
maximum or minimum value

Maximization and minimization are equivalent
• Replace f(x) with –f(x)



Notes from Root Finding

Introduces two useful ideas
• Which can be applied to function minimization

Bracketing
• Keep track of interval containing solution 

Accuracy
• Recognize that solution has limited precision



Note on Accuracy

When estimating minima and bracketing 
intervals, floating point accuracy must be 
considered

In general, if the machine precision is ε
the achievable accuracy is no more than 
sqrt(ε)



Note on Accuracy II

The error results from the second term in the 
Taylor approximation:

For functions where higher order terms are 
important, accuracy could be even lower. 
• For example, the minimum for f(x) = 1 + x4 is only 

estimated to about ε1/4

2
2

1 ))(()()( bxbfbfxf −′′+≈



Outline of Minimization Strategy

Part I
• Bracket minimum

Part II
• Successively tighten bracketing interval



Detailed Minimization Strategy

Find 3 points such that 
• a < b < c
• f(b) < f(a) and f(b) < f(c)

Then search for minimum by
• Selecting trial point in interval
• Keep minimum and flanking points



Minimization after Bracketing

1 2

3

4

5

6



Part I: 
Finding a Bracketing Interval

Consider two points
• a, b
• f(a) > f(b)

Take successively larger steps beyond b 
until function starts increasing



Bracketing in C
#define SCALE   1.618

void bracket (double (*f)(double), double* a, double* b, double* c)
{
double fa = (*f)( *a);
double fb = (*f)( *b);
double fc = (*f)( *c = *b + SCALE * (*b - *a) );

while (fb > fc)
{
*a = *b; fa = fb;
*b = *c; fb = fc;
*c = *b + SCALE * (*b - *a);
fc = (*f) (*c);
}

}



Bracketing in C++
#define SCALE   1.618

void bracket (double (*f)(double), double & a, double & b, double & c)
{
double fa = (*f)(a);
double fb = (*f)(b);
double fc = (*f)(c = b + SCALE * (b - a) );

while (fb > fc)
{
a = b; fa = fb;
b = c; fb = fc;
c = b + SCALE * (b - a);
fc = (*f) (c);
}

}



Part II:
Finding Minimum after Bracketing

Given 3 points such that 
• a < b < c
• f(b) < f(a) and f(b) < f(c)

How do we select new trial point?



Consider …

A B C

What is the best location for a new point X?



Consider …

A B C

We want to minimize the size of the next 
search interval which will be either 

from A to X or from B to C

X



Formulae …

so...y possibilit case worst minimize  want toWe

or      1

length have  willSegments

zww

ac
bxz

ac
abw

+−

−
−

=

−
−

=



Effectively …

38197.0
2

5-3w

gives This

1

21
is case optimal The

==

=
−

−=

w
w

z
wz



Golden Search



The Golden Ratio

A B C

Bracketing Triplet



The Golden Ratio

A B CX

0.38196 0.38196

New Point

The number 0.38196 is related to the golden mean studied by 
Pythagoras



The Golden Ratio

B X C

A B X

New Bracketing Triplet

0.38196

0.38196

Alternative New Bracketing Triplet



Golden Search

Reduces bracketing by ~40% after each 
function evaluation

Performance is independent of the function 
that is being minimized

Potentially, better schemes are possible



Golden Step
#define GOLD   0.38196
#define ZEPS   1e-10

double golden_step (double a, double b, double c)
{
double mid = (a + c) * 0.5;

if (b > mid)
return GOLD * (a - b);

else
return GOLD * (c - b);

}



Golden Search
double golden_search(double (*func)(double),

double a, double b, double c, double e)
{
double fb = (*func)(b);

while ( fabs(c - a) > fabs(b * e) + ZEPS)
{
double x = b + golden_step(a, b, c);
double fx = (*func)(x);

if (fx < fb) 
{
if (x > b) { a = b; } else { c = b; }
b = x; fb = fx;
}

else
if (x < b) { a = x; } else { c = x; }

}
return b;
}



Further Improvements

As with root finding, performance can 
improve substantially when a local 
approximation is used …

However, a linear approximation won't 
do in this case!



Approximating The Function



Recommended Reading

Numerical Recipes in C (or C++)
• Press, Teukolsky, Vetterling, Flannery
• Chapters 10.0 – 10.2

Excellent resource for scientific computing

Online at
• http://www.numerical-recipes.com/
• http://www.library.cornell.edu/nr/


