Introduction to Numerical Optimization

Biostatistics 615/815
Lecture 15

Course is More Than Half Done!

- If you have comments...
- ... they are very welcome
- Lectures
- Lecture notes
- Weekly Homework
- Midterm
- Content

Last Lecture

- Computer generated "random" numbers
- Linear congruential generators
- Improvements through shuffling, summing
- Importance of using validated generators
- Beware of problems with the default rand () function

Today ...

- Root finding
- Minimization for functions of one variable
- Ideas:
- Limits on accuracy
- Local approximations

Numerical Optimization

- Consider some function $f(x)$
- e.g. Likelihood for some model ...
- Find the value of x for which f takes a maximum or minimum value
- Maximization and minimization are equivalent
- Replace $f(x)$ with $-f(x)$

Algorithmic Objectives

- Solve problem...
- Conserve CPU time
- Conserve memory
- Most often, the CPU time is dominated by the cost of evaluating $f(x)$
- Minimize the number of evaluations

The Minimization Problem

Specific Objectives

- Finding global minimum
- The lowest possible value of the function
- Extremely hard problem
- Finding local minimum
- Smallest value within finite neighborhood

Typical Quality Checks

- When solving an optimization problem it is good practice to check the quality of the solution
- Try different starting values ...
- Perturb solution and repeat ...

A Quick Detour

- Consider the problem of finding zeros for $f(x)$
- Assume that you know:
- Point a where $f(a)$ is positive
- Point b where $f(b)$ is negative
- $f(x)$ is continuous between a and b
- How would you proceed to find x such that $\mathrm{f}(\mathrm{x})=0$?

Root Finding in C

double zero(double (*func)(double), double lo, double hi, double e) \{

```
while (1)
```

 \{
 double d = hi - lo;
 double point \(=10+d\) * 0.5;
 double fpoint \(=\) (*func)(point);
 if (fpoint < 0.0)
 \{ d = lo - point; lo = point; \}
 else
 \{ d = point - hi; hi = point; \}
 if (fabs(d) < e || fpoint == 0.0)
 return point;
 \}
 \}

Improvements to Root Finding

- Consider the following approximation:

$$
f^{*}(x)=f(a)+(x-a) \frac{f(b)-f(a)}{b-a}
$$

- Select new trial point such that $f^{*}(x)$ is zero.

Improved Root Finding in C

double zero (double (*func)(double), double lo, double hi, double e) \{
double flo = (*func)(lo);
double fhi = (*func)(hi);
while (1)
\{
double d = hi - lo;
double point $=1 o+d$ * flo / (flo - fhi);
double fpoint = (*func)(point);
if (fpoint < 0.0)
\{ d = lo - point; lo = point; flo = fpoint; \}
else
\{ d = point - hi; hi = point; fhi = fpoint; \}
if (fabs(d) < e || fpoint == 0.0)
return point;
\}

Performance Comparison

- Find the zero for $\sin (\mathrm{x})$
- In the interval - $\pi / 4$ to $\pi / 2$
- Accuracy parameter set to 10^{-5}
- Bisection method used 17 calls to $\sin (x)$
- Approximation used 5 calls to $\sin (x)$

Program That Uses Root Finding

```
double zero (double (*func)(double), double lo, double hi, double e);
```

double function(double x)
\{
return (4*x - 3);
\}
int main(int argc, char ** argv)
\{
double min $=$ zero(my_function, $-5,+5,1 e-5)$;
printf("Minimum for my function is \%.3f at \%.3f\n",
my_function(min), min);
\}

Notes on Root Finding

The $2^{\text {nd }}$ method we implemented is the False Position Method

- In the bisection method, the bracketing interval is halved at each step
- For well-behaved functions, the False Position Method will converge faster, but there is no performance guarantee

Questions on Root Finding

-What care is required in setting precision?

- How to set starting brackets for minimum?
- If the function was monotonic?
- If there is a specific target interval?
- What would happen for a function such as $f(x)=1 /(x-c)$

Back to Numerical Optimization

- Consider some function $f(x)$
- e.g. Likelihood for some model ...
- Find the value of x for which f takes a maximum or minimum value
- Maximization and minimization are equivalent
- Replace $f(x)$ with $-f(x)$

Notes from Root Finding

- Introduces two useful ideas
- Which can be applied to function minimization
- Bracketing
- Keep track of interval containing solution
- Accuracy
- Recognize that solution has limited precision

Note on Accuracy

- When estimating minima and bracketing intervals, floating point accuracy must be considered
- In general, if the machine precision is ε the achievable accuracy is no more than sqrt(ε)

Note on Accuracy II

- The error results from the second term in the Taylor approximation:

$$
f(x) \approx f(b)+1 / 2 f^{\prime \prime}(b)(x-b)^{2}
$$

- For functions where higher order terms are important, accuracy could be even lower.
- For example, the minimum for $f(x)=1+x^{4}$ is only estimated to about $\varepsilon^{1 / 4}$

Outline of Minimization Strategy

- Part I
- Bracket minimum
- Part II
- Successively tighten bracketing interval

Detailed Minimization Strategy

- Find 3 points such that
- $a<b<c$
- $f(b)<f(a)$ and $f(b)<f(c)$

Then search for minimum by

- Selecting trial point in interval
- Keep minimum and flanking points

Minimization after Bracketing

Part I:
 Finding a Bracketing Interval

- Consider two points
${ }^{\circ} a, b$
- $f(a)>f(b)$

Take successively larger steps beyond b until function starts increasing

Bracketing in C

\#define SCALE 1.618

void bracket (double (*f)(double), double* a, double* b, double* c) \{
double fa $=(* f)(* a)$;
double fb $=(* f)(* b)$;
double fc $=(* f)\left({ }^{*} c=* b+\operatorname{SCALE} *(* b-* a)\right) ;$
while (fb > fc)
\{
*a $=$ *b; $\mathrm{fa}=\mathrm{fb}$;
*b = *c; fb = fc;
*c $=$ *b + SCALE * (*b - *a);
fc = (*f) (*c);
\}
\}

Bracketing in C++

\#define SCALE 1.618
void bracket (double (*f)(double), double \& a, double \& b, double \& c) \{
double fa $=(* f)(a)$;
double fb $=(* f)(b)$;
double $f c=(* f)(c=b+\operatorname{SCALE} *(b-a)) ;$
while (fb > fc)
\{
$a=b ; f a=f b ;$
b = c; fb = fc;
c = b + SCALE * (b - a);
fc = (*f) (c);
\}
\}

Part II:
Finding Minimum after Bracketing
Given 3 points such that

$$
\begin{aligned}
& a<b<c \\
& -f(b)<f(a) \text { and } f(b)<f(c)
\end{aligned}
$$

- How do we select new trial point?

Consider...

What is the best location for a new point X ?

Consider...

We want to minimize the size of the next search interval which will be either from A to X or from B to C

Formulae ...

$w=\frac{b-a}{c-a}$
$z=\frac{x-b}{c-a}$

Segments will have length
$1-w$ or $w+z$

We want to minimize worst case possibility so...

Effectively ...

The optimal case is
$z=1-2 w$
$\frac{z}{1-w}=w$

This gives

$$
\mathrm{w}=\frac{3-\sqrt{5}}{2}=0.38197
$$

Golden Search

The Golden Ratio

Bracketing Triplet

The Golden Ratio

New Point

The number 0.38196 is related to the golden mean studied by Pythagoras

The Golden Ratio

New Bracketing Triplet

0.38196

Alternative New Bracketing Triplet

Golden Search

- Reduces bracketing by $\sim 40 \%$ after each function evaluation
- Performance is independent of the function that is being minimized
- Potentially, better schemes are possible

Golden Step

\#define GOLD 0.38196
\#define ZEPS 1e-10
double golden_step (double a, double b, double c)
\{
double mid $=(a+c)$ * 0.5;
if (b > mid)
return GOLD * (a - b);
else
return GOLD * (c - b);
\}

Golden Search

double golden_search(double (*func)(double), double a, double b, double c, double e)

```
{
double fb = (*func)(b);
while ( fabs(c - a) > fabs(b * e) + ZEPS)
        {
        double x = b + golden_step(a, b, c);
        double fx = (*func)(x);
        if (fx< fb)
        if (x > b) { a = b; } else { c = b; }
        b = x; fb = fx;
        }
    else
        if (x < b) { a = x; } else { c = x; }
    }
return b;
}
```


Further Improvements

- As with root finding, performance can improve substantially when a local approximation is used ...
- However, a linear approximation won't do in this case!

Approximating The Function

Recommended Reading

- Numerical Recipes in C (or C++)
- Press, Teukolsky, Vetterling, Flannery
- Chapters 10.0-10.2
- Excellent resource for scientific computing
- Online at
- http://www.numerical-recipes.com/
- http://www.library.cornell.edu/nr/

