Last Lecture

- Root finding
 - Bisection of bracketing interval
 - Using a linear approximation

- Optimization
 - Bracketing triplet
 - Golden section search
Today ...

- More on numerical optimization
 - Parabolic interpolation
 - Adaptive method

- Multi-dimensional optimization problem
 - Mixture distributions
Better Numerical Optimization

- As with root finding, performance can improve substantially when a local approximation is used.

- Degree of improvement depends on function being approximated.

- Construct an approximation with the current bracketing triplet.
 - Higher order approximations can have strange bends.
Approximating The Function
Parabolic Approximation

\[f^*(x) = Ax^2 + Bx + C \]

The value which minimizes \(f^*(x) \) is

\[x_{\text{min}} = -\frac{B}{2A} \]

Using this strategy to minimize the function is called "inverse parabolic interpolation"
Fitting a Parabola

- Can be fitted with three points
 - Points must not be co-linear

\[
C = f(x_1) - Ax_1^2 - Bx_1
\]
\[
B = \frac{A(x_2^2 - x_1^2) + (f(x_1) - f(x_2))}{x_1 - x_2}
\]
\[
A = \frac{f(x_3) - f(x_2)}{(x_3 - x_2)(x_3 - x_1)} - \frac{f(x_1) - f(x_2)}{(x_1 - x_2)(x_3 - x_1)}
\]
Minimum for a Parabola

- General expression for finding minimum of a parabola fitted through three points
 - Note repeated sub-expressions

\[
x_{\text{min}} = x_2 - \frac{1}{2} \frac{(x_2 - x_1)^2(f(x_2) - f(x_3)) - (x_2 - x_3)^2(f(x_2) - f(x_1))}{(x_2 - x_1)(f(x_2) - f(x_3)) - (x_2 - x_3)(f(x_2) - f(x_1))}
\]
Fitting a Parabola

// Returns the distance between b and the abscissa for the
// fitted minimum using parabolic interpolation
double parabola_step (double a, double fa,
 double b, double fb, double c, double fc)
{
 // Quantities for placing minimum of fitted parabola
 double p = (b - a) * (fb - fc);
 double q = (b - c) * (fb - fa);
 double x = (b - c) * q - (b - a) * p;
 double y = 2.0 * (p - q);

 // Check that q is not zero
 if (fabs(y) < ZEPS)
 return golden_step (a, b, c);
 else
 return x / y;
}
Caution: Using Fitted Minimum

- Fitted minimum could overlap with one of original points
 - Could produce degenerate case

- Ensure that each new point is distinct from previously examined points
Avoiding Degenerate Steps

double adjust_step(double a, double b, double c, double step, double e)
{
 double min_step = fabs(e * b) + ZEPS;

 if (fabs(step) < min_step);
 return step > 0 ? min_step : -min_step;

 // If the step ends up to close to previous points,
 // return zero to force a golden ratio step ...
 if (fabs(b + step - a) <= e || fabs(b + step - c) <= e)
 return 0.0;

 return step;
}
Generating New Points

- Use parabolic interpolation by default

- Check whether improvement is slow
 - Steps are not rapidly decreasing in length

- Switch to golden section if function is uncooperative
Calculating Step Size

def calculate_step(double a, double fa, double b, double fb, double c, double fc, double last_step, double e):
 double step = parabola_step(a, fa, b, fb, c, fc);
 step = adjust_step(a, b, c, step, e);

 if (fabs(step) > fabs(0.5 * last_step) || step == 0.0)
 step = golden_step(a, b, c);

 return step;
The main function simply has to:
- Generate new points using building blocks
- Update the triplet bracketing the minimum
- Check for convergence
double find_minimum(double (*func)(double), double a, double b, double c, double e)
{
 double fa = (*func)(a), fb = (*func)(b), fc = (*func)(c);
 double step1 = (c - a) * 0.5, step2 = (c - a) * 0.5;

 while (fabs(c - a) > fabs(b * e) + ZEPS)
 {
 double step = calculate_step (a, fa, b, fb, c, fc, step2, e);
 double x = b + step; double fx = (*func)(x);

 if (fx < fb)
 { if (x > b) { a = b; fa = fb; } else { c = b; fc = fb; } }
 else
 { if (x < b) { a = x; fa = fx; } else { c = x; fc = fx; } }

 step2 = step1; step1 = step;
 }
 return b;
}
Important Characteristics

- Parabolic interpolation often convergences faster
 - The preferred algorithm

- Golden search provides performance guarantee
 - A fall-back for uncooperative functions

- Switch algorithms when convergence slow
 - Allow parabolic interpolation one poor choice

- Avoid testing points that are too close
Brent's Strategy

- Most popular strategy for minimization without derivatives
 - Part of Richard Brent's PhD thesis in 1971

- Similar to the one we described:
 - Inverse Quadratic Interpolation, where possible
 - Golden Section Search, fall-back
Brent's Strategy

- Track 6 points
 - Not all distinct
 - The bracket boundaries (a, b)
 - The current minimum (x)
 - The second and third smallest values (w, v)
 - The new point to be examined (u)

- Parabolic interpolation uses (x, w, v) to propose new value for u
Recommended Reading

- Numerical Recipes in C (or C++)
 - Press, Teukolsky, Vetterling, Flannery
 - Chapters 10.0 – 10.2

- Excellent resource for scientific computing

- Online at
 - http://www.numerical-recipes.com/
 - http://www.library.cornell.edu/nr/
Next topic: Multi-dimensional Optimization

- Simplex method of Nelder and Mead
- The Expectation Maximization algorithm
- Monte-Carlo Methods
 - Metropolis algorithm
 - Gibbs sampling
A Multi-Dimensional Problem: Mixture Distributions

- Interesting application for multidimensional optimization

- Related to many useful statistical problems
 - Clustering
 - Classification
Classification

- Given elements with known groupings …
Given elements with known groupings …

Assign grouping for a new element
Clustering

- Starting with points with unknown sources

...
Clustering

- Starting with points with unknown sources
- Find appropriate grouping scheme
A simple distribution

- For many continuous measurements, normal distribution is a good starting point
- Parameters are easy to estimate from the sample
Heights for 4,102 Individuals

Mean = ~160 cm, Variance = ~80
Normal Density

- If the data is normally distributed, the density function for each component is

\[
f(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma} \right)^2}
\]
C Code: Normal Density

```c
#include <math.h>

double square(double x)
{
    return x * x;
}

double dnorm(double x, double mu, double sigma)
{
    return 1.0 / (sigma * sqrt(M_PI * 2.0)) * exp (-0.5 * square((x - mu)/sigma));
}
```
A Simple Mixture Distribution

- Observations are univariate
 - Single measurement

- Each component has a normal distribution
Two Underlying Distributions

Group 1

Mean = ~154 cm

Group 2

Mean = ~166 cm
A General Mixture Distribution

\[p(x \mid \pi, \phi, \eta) = \pi_1 f(x \mid \phi_1, \eta) + \ldots + \pi_k f(x \mid \phi_k, \eta) \]

- \(x \) is the observation
- \(\pi \) are the mixture proportions
- \(f \) is the probability density function
- \(\phi \) are parameters for each component
- \(\eta \) are parameters shared among components
- \(k \) is the number of components
C Code:
Mixture Distribution

double dmix(double x,
 int k, double probs[], double means[],
 double sigmas[])
{
 int i;
 double density = 0.0;

 for (i = 0; i < k; i++)

 density += probs[i] *
 dnorm(x, means[i], sigmas[i]);

 return density;
}
Maximum Likelihood Approach

- Find the parameters that maximize the likelihood for the entire sample

\[L = \prod_j p(x_j \mid \pi, \varphi, \eta) \]

- It is advisable to consider the log-likelihood instead to avoid underflows!

\[\ell = \sum_j \log p(x_j \mid \pi, \varphi, \eta) \]
C Code:
Overall Log-Likelihood

double mixLLK(int n, double x[],
 int k, double probs[], double means[],
 double sigmas[])
{
 int i;
 double llk = 0.0;

 for (int i = 0; i < n; i++)
 llk += log(dmix(x[i], k, probs, means, sigmas));

 return llk;
}
For each observation i, we are missing some specific (and interesting) information.

The group membership indicator Z_i

If this were observed, the entire problem could become quite simple.
Classification Probabilities

\[\Pr(Z_j = i \mid \pi, \phi, \eta) = \pi_i \]

\[\Pr(Z_j = i \mid x_j, \pi, \phi, \eta) = \frac{\pi_i f(x_j \mid \phi_i, \eta)}{\sum_l \pi_l f(x_j \mid \phi_l, \eta)} \]

- Results from the application of Bayes' theorem
- Probabilistic interpretation…
C Code:
Classification Probabilities

double classprob(int j, double x, int k,
 double probs[], double means[],
 double sigmas[])
{
 double p = probs[j] *
 dnorm(x, means[j], sigmas[j]);

 return p / dmix(x, k, probs, means, sigmas);
}

- Calculates the probability that observation x belongs to component j
A related problem

- Estimating the number of components
 - Can be interesting in itself!

- The maximum likelihood approach requires a preset number of components

- Penalized likelihood approaches required...
Example: Galaxy Speeds

Data of Postman et al. (1986) in the Astronomical Journal.
Fitting 3 Components (Stephens, 1997)
Fitting 6 Components
(Stephens, 1997)
An introduction to mixture distributions

Basic routines for modeling these data

In the upcoming lectures, we will examine how to fit these mixtures appropriately to data
Additional Reading

- If you need a refresher on mixture distributions...
 - Bayesian Methods for Mixture Distributions
 M. Stephens (1997)
 http://www.stat.washington.edu/stephens/
 - Chapter 1 recommended