
Introduction to
Numerical Integration

Biostatistics 615/815
Lecture 21

Last Series of Lectures

Numerical Optimization

Progressively sophisticated techniques
• Optimization in a single dimension
• Optimization along multiple dimensions
• Stochastic optimization strategies

Last Lecture: Gibbs Sampler

Today: Numerical Integration

Strategies for numerical integration

Simple strategies with equally spaced
abscissas

Gaussian quadrature methods

Introduction to Monte-Carlo Integration

The Problem
Evaluate:

When no analytical solution is readily available

Many applications in statistics
• Analysis of censored data,
• Evaluation of cumulative distributions, etc.

dxxfI
b

a∫=)(

The Challenge

Evaluate f(x) as few times as possible

Select appropriate set of abscissas

Select appropriate set of weights

The Basic Approach

Notation

Consider a series of abscissas
• x0, x1, x2, …, xn, xn+1

Let these be a constant step size h apart
• xi = x0 + i h

Further define:
• fi = f(xi)

Two Point Trapezoidal Rule

∫ ⎥⎦
⎤

⎢⎣
⎡ +≈2

1
21 2

1
2
1)(

x

x
ffhdxxf

Exact for polynomials up to degree 1
• For example, f(x) = 2x + 1

Error proportional to h3 and f(2)

Three Point Simpson's Rule

Exact for polynomials up to degree 3 (not 2!)
• Due to some symmetries in derivation

Error proportional to h5 and f(4)

∫ ⎥⎦
⎤

⎢⎣
⎡ ++≈3

1
321 3

1
3
4

3
1)(

x

x
fffhdxxf

Four Point Rule

Exact for polynomials up to degree 3
• No lucky symmetries this time…

Error proportional to h5 and f(4)

Additional formulas exist for higher orders …

∫ ⎥⎦
⎤

⎢⎣
⎡ +++≈4

1
4321 8

3
8
9

8
9

8
3)(

x

x
ffffhdxxf

Extended Rules

Combine simple rules along consecutive
intervals

Two and three point rules allow for
adaptive integration
• Gradually add points and check accuracy…

Extended Trapezoidal Rule

∫ ⎥⎦
⎤

⎢⎣
⎡ ++++=nx

x nffffhdxxf
1 2

1...
2
1)(321

Results from application of trapezoidal rule to
consecutive intervals …

Simple C Implementation
// Integrates function f(x) between a and b
// by evaluating it at the edges of the interval
// and at n interior points
double integrate2(double a, double b, double (*f)(double x), int n)

{
double h = (b – a) / (n + 1), sum;
int i;

sum = 0.5 * ((*f)(a) + (*f)(b));

for (int i = 1; i <= n; i++)
sum += (*f)(a + i * h);

return sum * h;
}

Extended Simpson Rule

∫ ⎥⎦
⎤

⎢⎣
⎡ ++++=nx

x nfffffhdxxf
1 3

1...
3
4

3
2

3
4

3
1)(4321

Results from application of Simpson's rule to
consecutive intervals …
• Note alternating 2/3 and 4/3 weights …

Simple C Implementation
double integrate3(double a, double b, double (*f)(double x), int n)

{
double h, sum; int i;

if (n % 2 == 0) n++; // n must be odd
h = (b – a) / (n + 1);

sum = (*f)(a) + (*f)(b) + 4.0 * (*f)(a + h);

for (int i = 2; i <= n; i += 2)
sum += 2.0 * (*f)(a + i*h) + 4.0 * (*f)(a + (i + 1)*h);

return sum * h / 3.0;
}

Problem …

Knowing the required number of points
before hand may not be practical…

Is there a simple way to "add more
points" ?

Gradually Adding Points

Can you derive formula for updating integral if points are added in this manner?
How would you check if a desired accuracy has been reached?

ROUND
0
1
2
3

After 4
rounds

Simple C Implementation
double update_integral(double a, double b,

double (*f)(double x),
double previous, int round)

{
double h, sum;
int i, n = 1 << (round – 1);

if (round == 0)
return 0.5 * ((*f)(a) + (*f)(b)) * (b – a);

sum = previous * n / (b - a);
h = (b - a) / (2 * n);
for (int i = 1; i < 2 * n; i += 2)

sum += (*f)(a + i*h);

return sum * h;
}

Simple C Implementation
#define ZEPS 1e-10

double integral(double a, double b, double (*f)(double x),
double eps)

{
double old = update_integral(a, b, f, 0.0, 0), result;
int round = 1;

while (1)
{
result = update_integral(a, b, f, old, round++);
if (fabs(result–old) < eps*(fabs(result)+fabs(old))+ZEPS)

return result;
old = result;
}

}

Simpson's Extended Rule …

Define TN and T2N to be trapezoidal rule results
with N and 2N points, respectively

Then the application of Simpson's rule gives:

NN TTS
3
1

3
4

2 −=

Simple C Implementation
double simpson(double a, double b, double (*f)(double x),

double eps)
{
double old = update_integral(a, b, f, 0.0, 0), result;
double sold = old, sresult;
int round = 1;

while (1)
{
result = update_integral(a, b, f, old, round++);
sresult = (4.0 * result – old) / 3.0;
if (fabs(sresult–sold)<eps*(fabs(sresult)+fabs(sold))+ZEPS)

return sresult;
old = result; sold = sresult;
}

}

Simple Application

Integrate standard normal density
• Between 0.0 and 1.0
• Correct result is 0.341345

With ε=10-5, I got the following results:
• Trapezoidal rule, 7 rounds, 129 evaluations, 0.341344
• Simpson's rule, 4 rounds, 17 evaluations, 0.341355

In this case, higher order approximation was
more efficient

Notes on Classical Methods

These methods are most intuitive

Two major applications:
• Functions that are not smooth
• Function can be pre-calculated along a grid

Exact solutions for polynomials of degree
n typically require n or n-1 evaluations

Classical Methods

Function evaluated at equally spaced
points

Choice of weights for combining results
determines order of approximation

Quadrature Methods

Select locations of function evaluations
and weights simultaneously
• Abscissas correspond to zeros of particular

classes of orthogonal polynomials

Achieves higher order approximations
faster

Gaussian Quadrature

The original idea is due to Gauss (1814)
• Described a strategy for choosing appropriate weights and

abscissas
Weights and abscissas can be chosen to provide exact
results for polynomials of degree 2N – 1 or integrable
functions of the form W(x) * polynomial(2N – 1)

∫ ∑
=

≈
b

a

N

j
jj xfwdxxf

1
)()(

Intuition Behind Idea

Evaluating function at any two points, we
can derive exact solution for polynomials of
degree 1.
• E.g. The trapezoidal rule does this.

But a single well chosen point can achieve
the same result…
• Which point?

Some Example Abscissas

7

34785485.0
65214515.0
65214515.0
34785485.0

86113631.0
33998104.0
33998104.0
86113631.0

4

5
5555555.0
8888889.0
5555555.0

77459667.0
0.0

77459667.0
3

3
0.1
0.1

2
3

1

3
1

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+
+
−
−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+

−

MaxDegreeWeightsAbscissasN

C Code
double gauss3(double a, double b, double (*f)(double x))

{
double abscissas[] = {-0.77459667, 0.0, 0.77459667 };
double weights[] = {0.55555555, 0.88888889, 0.55555555};
double midpoint = 0.5 * (a + b);
double h = 0.5 * (b - a);
double sum = 0.0;

for (int i = 0; i < 3; i++)
sum += weights[i] * (*f)(midpoint + abscissas[i] * h);

return sum * h;
}

Comparison
Integrate standard normal density
• Between 0.0 and 1.0
• Correct result is 0.341345

With 2, 3 and 4 function evaluations I got:
• Using trapezoidal rule

• 0.320457, 0.336261, 0.339096
• Using quadrature

• 0.341221, 0.341346, 0.341345
• Using Simpson's rule (3 evaluations)

• **********, 0.341529, ***********

Multi-Dimensional Integrals

∫

∫∫ ∫

=

=
=

=

=

=

=

=

d

c

bx

ax

bx

ax

dy

cy

dyyxfxg

dxxgdxdyyxf

),()(

)(),(

Simplest strategy is to evaluate as a series of
one dimensional integrals
• Exponential increase in function evaluations

Monte-Carlo Methods

Evaluate and average function at random
points

Adaptive methods focus on areas where
integrand is most significant
• Crucial for multiple dimensions

Monte-Carlo Importance Sampling

Assume N evaluations are available

Evaluate function at kN random points

Divide region of integration into high and
low variance regions
• Allocate remaining (1 – k)N points so that most

are used in high variance region

Today:

Numerical integration

Classical strategies, with equally spaced
abscissas

Discussion of quadrature methods and
Monte-Carlo methods

Recommended Reading

Numerical Recipes
• Chapters 4.0 – 4.2 for Classical Methods
• Chapter 4.5 for Gaussian Quadrature
• Chapter 7.8 for Monte-Carlo methods

Available online at:
• http://www.nr.com

Happy Thanksgiving!

