Introduction to Numerical Integration

Biostatistics 615/815
Lecture 21

Last Series of Lectures

- Numerical Optimization
- Progressively sophisticated techniques
- Optimization in a single dimension
- Optimization along multiple dimensions
- Stochastic optimization strategies
- Last Lecture: Gibbs Sampler

Today: Numerical Integration

- Strategies for numerical integration
- Simple strategies with equally spaced abscissas
- Gaussian quadrature methods
- Introduction to Monte-Carlo Integration

The Problem

- Evaluate:

$$
I=\int_{a}^{b} f(x) d x
$$

- When no analytical solution is readily available
- Many applications in statistics
- Analysis of censored data,
- Evaluation of cumulative distributions, etc.

The Challenge

- Evaluate $f(x)$ as few times as possible
- Select appropriate set of abscissas
- Select appropriate set of weights

The Basic Approach

Notation

- Consider a series of abscissas
${ }^{\circ} x_{0}, x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}$
- Let these be a constant step size h apart
${ }^{\circ} x_{i}=x_{0}+i h$
- Further define:
${ }^{-} f_{i}=f\left(x_{i}\right)$

Two Point Trapezoidal Rule

$$
\int_{x_{1}}^{x_{2}} f(x) d x \approx h\left[\frac{1}{2} f_{1}+\frac{1}{2} f_{2}\right]
$$

- Exact for polynomials up to degree 1
- For example, $f(x)=2 x+1$
- Error proportional to h^{3} and $f^{(2)}$

Three Point Simpson's Rule

$$
\int_{x_{1}}^{x_{3}} f(x) d x \approx h\left[\frac{1}{3} f_{1}+\frac{4}{3} f_{2}+\frac{1}{3} f_{3}\right]
$$

- Exact for polynomials up to degree 3 (not 2!)
- Due to some symmetries in derivation
- Error proportional to h^{5} and $f^{(4)}$

Four Point Rule

$$
\int_{x_{1}}^{x_{4}} f(x) d x \approx h\left[\frac{3}{8} f_{1}+\frac{9}{8} f_{2}+\frac{9}{8} f_{3}+\frac{3}{8} f_{4}\right]
$$

- Exact for polynomials up to degree 3
- No lucky symmetries this time...
- Error proportional to h^{5} and $f^{(4)}$
- Additional formulas exist for higher orders ...

Extended Rules

- Combine simple rules along consecutive intervals

Two and three point rules allow for adaptive integration

- Gradually add points and check accuracy...

Extended Trapezoidal Rule

$$
\int_{x_{1}}^{x_{n}} f(x) d x=h\left[\frac{1}{2} f_{1}+f_{2}+f_{3}+\ldots+\frac{1}{2} f_{n}\right]
$$

- Results from application of trapezoidal rule to consecutive intervals ...

Simple C Implementation

// Integrates function $f(x)$ between a and b
// by evaluating it at the edges of the interval
// and at n interior points
double integrate2(double a, double b, double (*f)(double x), int n)
\{
double $h=(b-a) /(n+1)$, sum;
int i;
sum $=0.5$ * ((*f)(a) + (*f)(b));
for (int i = 1; i <= n; i++)
sum += (*f)(a + i * h);
return sum * h;
\}

Extended Simpson Rule

$$
\int_{x_{1}}^{x_{n}} f(x) d x=h\left[\frac{1}{3} f_{1}+\frac{4}{3} f_{2}+\frac{2}{3} f_{3}+\frac{4}{3} f_{4} \ldots+\frac{1}{3} f_{n}\right]
$$

- Results from application of Simpson's rule to consecutive intervals ...
- Note alternating $2 / 3$ and $4 / 3$ weights ...

Simple C Implementation

double integrate3(double a, double b, double (*f)(double x), int n) \{ double h, sum; int i;
if ($\mathrm{n} \% 2$ == 0) n++; // n must be odd $h=(b-a) /(n+1) ;$
sum $=(* f)(a)+(* f)(b)+4.0$ * (*f)(a + h);
for (int i = 2; i <= n; i += 2)
sum += 2.0 * (*f)(a + i*h) + 4.0 * (*f) (a + (i + 1)*h);
return sum * h / 3.0;
\}

Problem ...

- Knowing the required number of points before hand may not be practical...
- Is there a simple way to "add more points" ?

Gradually Adding Points

Can you derive formula for updating integral if points are added in this manner? How would you check if a desired accuracy has been reached?

Simple C Implementation

double update_integral(double a, double b, double (*f)(double x), double previous, int round)
\{
double h, sum;
int i, $\mathrm{n}=1 \ll$ (round - 1);
if (round == 0)
return 0.5 * ((*f)(a) + (*f)(b)) * (b - a);
sum = previous * n / (b-a);
h = (b-a) / (2 * n);
for (int i = 1; i < 2 * n; i += 2)
sum += (*f)(a + i*h);
return sum * h;
\}

Simple C Implementation

\#define ZEPS 1e-10
double integral(double a, double b, double (*f)(double x), double eps)
\{
double old = update_integral(a, b, f, 0.0, 0), result; int round = 1;
while (1)
\{
result = update_integral(a, b, f, old, round++);
if (fabs(result-old) < eps*(fabs(result)+fabs(old))+ZEPS) return result;
old = result;
\}
\}

Simpson's Extended Rule ...

- Define T_{N} and $T_{2 N}$ to be trapezoidal rule results with N and $2 N$ points, respectively
- Then the application of Simpson's rule gives:

$$
S=\frac{4}{3} T_{2 N}-\frac{1}{3} T_{N}
$$

Simple C Implementation

double simpson(double a, double b, double (*f)(double x), double eps)

```
{
```

double old = update_integral(a, b, f, 0.0, 0), result;
double sold = old, sresult;
int round = 1;
while (1)
\{
result = update_integral(a, b, f, old, round++);
sresult $=(4.0$ * result - old) / 3.0;
if (fabs(sresult-sold)<eps*(fabs(sresult)+fabs(sold))+ZEPS)
return sresult;
old = result; sold = sresult;
\}
\}

Simple Application

- Integrate standard normal density
- Between 0.0 and 1.0
- Correct result is 0.341345
- With $\varepsilon=10^{-5}$, I got the following results:
- Trapezoidal rule, 7 rounds, 129 evaluations, 0.341344
- Simpson's rule, 4 rounds, 17 evaluations, 0.341355
- In this case, higher order approximation was more efficient

Notes on Classical Methods

- These methods are most intuitive
- Two major applications:
- Functions that are not smooth
- Function can be pre-calculated along a grid
- Exact solutions for polynomials of degree n typically require n or $n-1$ evaluations

Classical Methods

- Function evaluated at equally spaced points
- Choice of weights for combining results determines order of approximation

Quadrature Methods

- Select locations of function evaluations and weights simultaneously
- Abscissas correspond to zeros of particular classes of orthogonal polynomials
- Achieves higher order approximations faster

Gaussian Quadrature

$$
\int_{a}^{b} f(x) d x \approx \sum_{j=1}^{N} w_{j} f\left(x_{j}\right)
$$

- The original idea is due to Gauss (1814)
- Described a strategy for choosing appropriate weights and abscissas
- Weights and abscissas can be chosen to provide exact results for polynomials of degree $2 N-1$ or integrable functions of the form $W(x)$ * polynomial $(2 N-1)$

Intuition Behind Idea

- Evaluating function at any two points, we can derive exact solution for polynomials of degree 1.
- E.g. The trapezoidal rule does this.
- But a single well chosen point can achieve the same result...
- Which point?

Some Example Abscissas

$$
\begin{aligned}
& N \quad \text { Abscissas Weights MaxDegree } \\
& 2\binom{-\sqrt{1 / 3}}{+\sqrt{1 / 3}} \quad\binom{1.0}{1.0} \quad 3 \\
& 3\left(\begin{array}{c}
-0.77459667 \\
0.0 \\
+0.77459667
\end{array}\right)\left(\begin{array}{l}
0.5555555 \\
0.8888889 \\
0.5555555
\end{array}\right) \\
& 4\left(\begin{array}{l}
-0.86113631 \\
-0.33998104 \\
+0.33998104 \\
+0.86113631
\end{array}\right)\left(\begin{array}{l}
0.34785485 \\
0.65214515 \\
0.65214515 \\
0.34785485
\end{array}\right)
\end{aligned}
$$

C Code

double gauss3(double a, double b, double (*f)(double x))
\{
double abscissas[] = \{-0.77459667, 0.0, 0.77459667 \};
double weights[] $=\{0.55555555,0.88888889,0.55555555\}$;
double midpoint $=0.5$ * (a + b);
double $h=0.5$ * ($b-a$);
double sum = 0.0;
for (int i = 0; i < 3; i++)
sum += weights[i] * (*f)(midpoint + abscissas[i] * h);
return sum * h;
\}

Comparison

- Integrate standard normal density
- Between 0.0 and 1.0
- Correct result is 0.341345
- With 2, 3 and 4 function evaluations I got:
- Using trapezoidal rule
- 0.320457, 0.336261, 0.339096
- Using quadrature
- 0.341221, 0.341346, 0.341345
- Using Simpson's rule (3 evaluations)
- **********, 0.341529 , ***********

Multi-Dimensional Integrals

$$
\begin{aligned}
& \int_{x=a}^{x=b} \int_{y=c}^{y=d} f(x, y) d x d y=\int_{x=a}^{x=b} g(x) d x \\
& g(x)=\int_{c}^{d} f(x, y) d y
\end{aligned}
$$

- Simplest strategy is to evaluate as a series of one dimensional integrals
- Exponential increase in function evaluations

Monte-Carlo Methods

- Evaluate and average function at random points
- Adaptive methods focus on areas where integrand is most significant
- Crucial for multiple dimensions

Monte-Carlo Importance Sampling

- Assume N evaluations are available
- Evaluate function at $k N$ random points
- Divide region of integration into high and low variance regions
- Allocate remaining $(1-k) N$ points so that most are used in high variance region

Today:

- Numerical integration
- Classical strategies, with equally spaced abscissas
- Discussion of quadrature methods and Monte-Carlo methods

Recommended Reading

- Numerical Recipes
- Chapters 4.0-4.2 for Classical Methods
- Chapter 4.5 for Gaussian Quadrature
- Chapter 7.8 for Monte-Carlo methods
- Available online at:
- http://www.nr.com

Happy Thanksgiving!

