
Monte Carlo Integration

Biostatistics 615/815
Lecture 22



Reminders

No lecture on Thursday, November 30

Project due on by December 8
• Short descriptive report (about 2 pages)
• Code and instructions on how to use it

Review session on December 7

Midterm on December 12



Midterm Topics
Random number generation

Numerical optimization
• Golden search
• Parabolic interpolation
• Nelder Mead simplex method
• Simulated annealing
• Gibbs sampler

Numerical Integration
• Classical methods
• Monte-Carlo integration



Last Lecture …

Numerical integration

Classical strategies, with equally spaced 
abscissas

Discussion of quadrature methods and 
Monte-Carlo methods



The Problem
Evaluate:

When no analytical solution is readily available

Evaluate f(x) as few times as necessary

Things to consider:
• The choice of abscissas
• The choice of weights for combining results
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The Basic Approach



Classical Solutions

Trapezoidal Rule
Simpson’s rule

Adaptive integration
• Doubled the number of points at each round…

Gaussian quadrature methods
• Improved accuracy for smooth functions



Today: Monte Carlo Integration



Basic Monte Carlo Integration

Consider a multidimensional volume V

Consider N random points within V
• x1, x2, … xN

Evaluate the function f at each point …

… use observed average to estimate integral



Definitions

The average function value

The average squared function value

Estimate of the integrand (+/- standard error)



Simple Monte Carlo Integration

Sample points within A
Calculate proportion π of points in region of interest
Area under the curve is the area A π



C Code: Sampling a Point
// This code assumes the Random() function returns a
// uniformly distributed random number between zero and
// one. It then samples a random point within a
// multidimensional “rectangular” space.

void SamplePoint(double * point, double * lo, double * hi,
int dim)

{
for (int i = 0; i < dim; i++)

point[i] = lo[i] + Random() * (hi[i] - lo[i]);
}



C Code: Monte Carlo Integral
double Integrate(double (*f)(double *, int),

double * lo, double * hi, int dim, double N)
{
double * point = alloc_vector(dim);
double sum = 0.0, sumsq = 0.0;

for (int i = 0; i < N; i++)
{
SamplePoint(point, lo, hi, dim);

double fx = f(point, dim);
sum += fx;
sumsq += fx * fx;
}

double volume = 1.0;
for (int i = 0; i < dim; i++)

volume *= (hi[i] - lo[i]);

free_vector(point, dim);
return volume * sum / N;
}



Sampling Points

We saw how to sample points from a 
simple “rectangular” region …

… what if the region of interest as a 
complicated shape?

Do you have any ideas?



A Complicated Target Region

Numerical Recipes uses
this volume as an example
of Monte Carlo integration.



The Error Term …

In simple Monte-Carlo integration the error term 
decreases with 

This is not quite as good as with our classic 
formulas which used equally spaced points…
• In those formulas, error is generally proportional to 1/N

N



Challenge

Flexibility of Monte Carlo integration …
• Easy to add more points as needed

Efficiency of solutions based on equally spaced 
points
• Accuracy increases faster than 

Solution is to sample points “randomly” but also
• … “equally spaced”
• … avoiding clustering

N



Halton’s Sequence

A quasi-random sequence that fills space

To obtain the jth number in series…
• Consider a prime number b
• Write j in base b
• Reverse the digits of j 
• Add a leading decimal

In n-dimensions, consider n different primes



Halton’s Sequence (b = 2)

Digits Reversed Base 10
0 .0 0.000
1 .1 0.500

10 .01 0.250
11 .11 0.750

100 .001 0.125
101 .101 0.625
110 .011 0.375
111 .111 0.875



Halton’s Sequence (b = 3)

Digits Reverse Base 10
0 .0 0.000
1 .1 0.333
2 .2 0.667

10 .01 0.111
11 .11 0.444
12 .21 0.778
20 .02 0.222
21 .12 0.556
22 .22 0.889



Sobol’s Sequence



Advantages of Quasi-Random 
Sequences



Quasi-Random Sequences

Although Halton’s sequence is intuitive, it is a 
bit cumbersome to code

Other sequences (such as Sobol’s sequence) 
are more commonly used in practice

They can all greatly improve accuracy of 
Monte-Carlo integrals



So far …

Random sampling of points is simplest…
… but quasi-random sampling is better

Let’s examine why in a bit more detail.



Stratified Sampling, 2 regions

Use random sampling within each one

The estimated average of the function is …

With variance …



Stratified Sampling 
Improves Accuracy!

Without stratifying, variance would be:

Extra term reflects differences in region specific means

<<>> operator denotes true average



Stratified Sampling, 
with Different Numbers of Points

In this setting, expected variance of stratified 
estimate is:

Which is minimized when:



Recursive Stratified Sampling

Given total number of evaluations N

Sample a few points at random
Identify optimal bisection
Integrate each half separately
• Repeating the steps above in each half that is 

not too small…



Practical Nuances

Instead of examining variance in each half
• Check minimum and maximum function values

Weights for allocating points are heuristic
• Attenuated compared to idealized weights

Should the splits generate equal halves?



C Code: Constants

/* Don't split less than these points */
#define MINPOINTS             60        

/* Minimum allocation for each half */
#define MINSPLIT              15        

/* Minimum points for exploring split */
#define EXPLORE_MIN           10        

/* Maximum points for exploring split */
#define EXPLORE_MAX           100       

/* Proportion of points for exploration */
#define EXPLORE_PROPORTION    0.10      

/* A very large value */
#define VERY_LARGE            1.0e20    



C Code: Recursive Integration (I)
double RecursiveIntegration(double (* f)(double *, int),

double * lo, double * hi, int dim, int N)
{
int RandD; double save, result, totalvar, var0;
double * midpoint = alloc_vector(dim);
double ** min = alloc_matrix(2, dim);
double ** max = alloc_matrix(2, dim);

if (N < MINPOINTS) return Integrate(f, lo, hi, dim, N);

SetupIntegration(lo, hi, midpoint, min, max, dim, N, RandD);
ExploreIntegral(f, lo, hi, midpoint, min, max, dim, RandD);
int split = ChooseSplit(min, max, dim, totalvar, var0);

int points0 = N * var0 / totalvar;
if (points0 < MINSPLIT) points0 = MINSPLIT;



C Code: Recursive Integration (II)
save = hi[split]; hi[split] = midpoint[split];
result = RecursiveIntegration(f, lo, hi, dim, points0);
hi[split] = save;

save = lo[split]; lo[split] = midpoint[split];
result += RecursiveIntegration(f, lo, hi, dim, N - points0);
lo[split] = save;

free_vector(midpoint, dim);
free_matrix(min, 2, dim);
free_matrix(max, 2, dim);

return result;
}



Helper Functions…
The main code delegates nearly all its tasks

SetupIntegration()
• Initialize variables 
• Decide how many points to invest in R&D

ExploreIntegral()
• Sample points and collect information for bisection

ChooseSplit()
• Decide how best to divide volume



Helper Function I
void SetupIntegration(double * lo, double * hi, double * midpoint,

double ** min, double ** max, int dim, int & N, int & RandD)
{
// Calculate midpoint for the current region
for (int j = 0; j < dim; j++)

{
midpoint[j] = 0.5 * (lo[j] + hi[j]);
min[0][j] = min[1][j] =  VERY_LARGE;
max[0][j] = max[1][j] = -VERY_LARGE;
}

// Allocate some points to explore the function...
RandD = N * EXPLORE_PROPORTION;

if (RandD < EXPLORE_MIN) RandD = EXPLORE_MIN;
if (RandD > EXPLORE_MAX) RandD = EXPLORE_MAX;

N -= RandD;
}



Helper Function II
void ExploreIntegral(double (*f)(double *, int),

double * lo, double * hi, double * midpoint, 
double ** min, double ** max, int dim, int N)

{
double * point = alloc_vector(dim);

for (int n = 0; n < N; n++)
{
SamplePoint(point, lo, hi, dim);
double fx = f(point, dim);

for (int j = 0; j < dim; j++)
{
int half = point[j] > midpoint[j];

max[half][j] = fx > max[half][j] ? fx : max[half][j];
min[half][j] = fx < min[half][j] ? fx : min[half][j];
}

}
free_vector(point, dim);
}



Helper Function III
int ChooseSplit(double ** min, double ** max, int dim, 

double & var, double & var0)
{
int split = -1;

// Choose the region giving biggest reduction in the variance
for (int j = 0; j < dim; j++)

// have we got two points on each half of the region?
if (max[0][j] > min[0][j] && max[1][j] > min[1][j])

{
// The lines below use the empirical weighting
double sigma0 = pow(max[0][j] - min[0][j], 2.0 / 3.0);
double sigma1 = pow(max[1][j] - min[1][j], 2.0 / 3.0);

double sigma = sigma0 + sigma1;

if (split == -1 || sigma < var)
{ split = j; var = sigma; var0 = sigma0; }

}

if (split == -1)
{ var0 = 1.0; var = 2.0; split = Random() * dim; }

return split;
}



Test Results

Integrating a bivariate normal distribution

Simple Monte-Carlo Integration
• 100, 1000, 10000, 100000 evaluations
• .002, .0006, .0002, .00006 standard error

Recursive stratified sampling
• 100, 1000, 10000, 100000 evaluations
• .001, .0001, .00001, .000001 standard error



Enhancements

Randomize splits a little bit …

Use Halton’s sequence (or similar) to 
select points



Today

Monte Carlo Integration
• Randomly distributed points

• Points selected to fill space

• Points targeted to high variance regions

The last two strategies can be combined!



Recommended Reading

Numerical Recipes
• Chapter 7.6 – 7.8

Available online at:
• http://www.nr.com


