Monte Carlo Integration

Biostatistics 615/815 Lecture 22

Reminders

- No lecture on Thursday, November 30
- Project due on by December 8
 - Short descriptive report (about 2 pages)
 - Code and instructions on how to use it
- Review session on December 7
- Midterm on December 12

Midterm Topics

- Random number generation
- Numerical optimization
 - Golden search
 - Parabolic interpolation
 - Nelder Mead simplex method
 - Simulated annealing
 - Gibbs sampler
- Numerical Integration
 - Classical methods
 - Monte-Carlo integration

Last Lecture ...

Numerical integration

Classical strategies, with equally spaced abscissas

 Discussion of quadrature methods and Monte-Carlo methods

The Problem

Evaluate:

$$I = \int_{a}^{b} f(x) dx$$

- When no analytical solution is readily available
- Evaluate f(x) as few times as necessary
- Things to consider:
 - The choice of abscissas
 - The choice of weights for combining results

The Basic Approach

closed formulas use these points

Classical Solutions

- Trapezoidal Rule
- Simpson's rule
- Adaptive integration
 - Doubled the number of points at each round...
- Gaussian quadrature methods
 - Improved accuracy for smooth functions

Today: Monte Carlo Integration

Basic Monte Carlo Integration

- Consider a multidimensional volume V
- Consider N random points within V
 - $x_1, x_2, \dots x_N$
- Evaluate the function f at each point ...
- ... use observed average to estimate integral

Definitions

The average function value

$$\langle f \rangle \equiv \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$

The average squared function value

$$\langle f^2 \rangle \equiv \frac{1}{N} \sum_{i=1}^{N} f^2(x_i)$$

Estimate of the integrand (+/- standard error)

$$\int f \ dV \approx V \langle f \rangle \ \pm V \sqrt{\frac{\langle f^2 \rangle - \langle f \rangle^2}{N}}$$

Simple Monte Carlo Integration

- Sample points within A
- Calculate proportion π of points in region of interest
- Area under the curve is the area A π

C Code: Sampling a Point

C Code: Monte Carlo Integral

```
double Integrate(double (*f)(double *, int),
                 double * lo, double * hi, int dim, double N)
   double * point = alloc_vector(dim);
   double sum = 0.0, sumsq = 0.0;
   for (int i = 0; i < N; i++)
      SamplePoint(point, lo, hi, dim);
      double fx = f(point, dim);
      sum += fx;
      sumsq += fx * fx;
   double volume = 1.0;
   for (int i = 0; i < dim; i++)</pre>
      volume *= (hi[i] - lo[i]);
   free vector(point, dim);
   return volume * sum / N;
```

Sampling Points

 We saw how to sample points from a simple "rectangular" region ...

 ... what if the region of interest as a complicated shape?

Do you have any ideas?

A Complicated Target Region

Numerical Recipes uses this volume as an example of Monte Carlo integration.

The Error Term ...

- In simple Monte-Carlo integration the error term decreases with \sqrt{N}
- This is not quite as good as with our classic formulas which used equally spaced points...
 - In those formulas, error is generally proportional to 1/N

Challenge

- Flexibility of Monte Carlo integration ...
 - Easy to add more points as needed
- Efficiency of solutions based on equally spaced points
 - lacktriangle Accuracy increases faster than \sqrt{N}
- Solution is to sample points "randomly" but also
 - ... "equally spaced"
 - ... avoiding clustering

Halton's Sequence

- A quasi-random sequence that fills space
- To obtain the j^{th} number in series...
 - Consider a prime number b
 - Write j in base b
 - Reverse the digits of j
 - Add a leading decimal
- In n-dimensions, consider n different primes

Halton's Sequence (b = 2)

Digits	Reversed	Base 10
0	.0	0.000
1	.1	0.500
10	.01	0.250
11	.11	0.750
100	.001	0.125
101	.101	0.625
110	.011	0.375
111	.111	0.875

Halton's Sequence (b = 3)

Digits	Reverse	Base 10
0	.0	0.000
1	.1	0.333
2	.2	0.667
10	.01	0.111
11	.11	0.444
12	.21	0.778
20	.02	0.222
21	.12	0.556
22	.22	0.889

Sobol's Sequence

Advantages of Quasi-Random Sequences

Quasi-Random Sequences

- Although Halton's sequence is intuitive, it is a bit cumbersome to code
- Other sequences (such as Sobol's sequence) are more commonly used in practice
- They can all greatly improve accuracy of Monte-Carlo integrals

So far ...

- Random sampling of points is simplest...
- ... but quasi-random sampling is better

Let's examine why in a bit more detail.

Stratified Sampling, 2 regions

- Use random sampling within each one
- The estimated average of the function is ...

$$\langle f \rangle' \equiv \frac{1}{2} \left(\langle f \rangle_a + \langle f \rangle_b \right)$$

With variance ...

$$\operatorname{Var}\left(\langle f\rangle'\right) = \frac{1}{4}\left[\operatorname{Var}\left(\langle f\rangle_a\right) + \operatorname{Var}\left(\langle f\rangle_b\right)\right]$$

Stratified Sampling Improves Accuracy!

Without stratifying, variance would be:

$$\operatorname{Var}(f) = \frac{1}{2} \left[\operatorname{Var}_a(f) + \operatorname{Var}_b(f) \right] + \frac{1}{4} \left(\langle \langle f \rangle \rangle_a - \langle \langle f \rangle \rangle_b \right)^2$$

- Extra term reflects differences in region specific means
- <<>> operator denotes true average

Stratified Sampling, with Different Numbers of Points

 In this setting, expected variance of stratified estimate is:

$$\operatorname{Var}\left(\langle f \rangle'\right) = \frac{1}{4} \left[\frac{\operatorname{Var}_a(f)}{N_a} + \frac{\operatorname{Var}_b(f)}{N - N_a} \right]$$

Which is minimized when:

$$\frac{N_a}{N} = \frac{\sigma_a}{\sigma_a + \sigma_b}$$

Recursive Stratified Sampling

Given total number of evaluations N

- Sample a few points at random
- Identify optimal bisection
- Integrate each half separately
 - Repeating the steps above in each half that is not too small...

Practical Nuances

- Instead of examining variance in each half
 - Check minimum and maximum function values
- Weights for allocating points are heuristic
 - Attenuated compared to idealized weights

Should the splits generate equal halves?

C Code: Constants

```
/* Don't split less than these points */
#define MINPOINTS
                              60
/* Minimum allocation for each half */
#define MINSPLIT
                              15
/* Minimum points for exploring split */
#define EXPLORE MIN
                              10
/* Maximum points for exploring split */
#define EXPLORE MAX
                              100
/* Proportion of points for exploration */
#define EXPLORE PROPORTION
                              0.10
/* A very large value */
#define VERY LARGE
                              1.0e20
```

C Code: Recursive Integration (I)

```
double RecursiveIntegration(double (* f)(double *, int),
                double * lo, double * hi, int dim, int N)
   int RandD; double save, result, totalvar, var0;
   double * midpoint = alloc_vector(dim);
   double ** min = alloc matrix(2, dim);
   double ** max = alloc matrix(2, dim);
   if (N < MINPOINTS) return Integrate(f, lo, hi, dim, N);</pre>
   SetupIntegration(lo, hi, midpoint, min, max, dim, N, RandD);
   ExploreIntegral(f, lo, hi, midpoint, min, max, dim, RandD);
   int split = ChooseSplit(min, max, dim, totalvar, var0);
   int points0 = N * var0 / totalvar;
   if (points0 < MINSPLIT) points0 = MINSPLIT;</pre>
```

C Code: Recursive Integration (II)

```
save = hi[split]; hi[split] = midpoint[split];
result = RecursiveIntegration(f, lo, hi, dim, points0);
hi[split] = save;

save = lo[split]; lo[split] = midpoint[split];
result += RecursiveIntegration(f, lo, hi, dim, N - points0);
lo[split] = save;

free_vector(midpoint, dim);
free_matrix(min, 2, dim);
free_matrix(max, 2, dim);

return result;
}
```

Helper Functions...

- The main code delegates nearly all its tasks
- SetupIntegration()
 - Initialize variables
 - Decide how many points to invest in R&D
- ExploreIntegral()
 - Sample points and collect information for bisection
- ChooseSplit()
 - Decide how best to divide volume

Helper Function I

Helper Function II

```
void ExploreIntegral(double (*f)(double *, int),
           double * lo, double * hi, double * midpoint,
           double ** min, double ** max, int dim, int N)
   double * point = alloc vector(dim);
   for (int n = 0; n < N; n++)
      SamplePoint(point, lo, hi, dim);
      double fx = f(point, dim);
      for (int j = 0; j < dim; j++)</pre>
         int half = point[j] > midpoint[j];
         \max[half][j] = fx > \max[half][j]? fx : \max[half][j];
         min[half][j] = fx < min[half][j] ? fx : min[half][j];
   free vector(point, dim);
```

Helper Function III

```
int ChooseSplit(double ** min, double ** max, int dim,
                double & var, double & var0)
   int split = -1;
   // Choose the region giving biggest reduction in the variance
   for (int j = 0; j < \dim; j++)
      // have we got two points on each half of the region?
      if (\max[0][j] > \min[0][j] && \max[1][j] > \min[1][j])
         // The lines below use the empirical weighting
         double sigma0 = pow(max[0][j] - min[0][j], 2.0 / 3.0);
         double sigma1 = pow(max[1][j] - min[1][j], 2.0 / 3.0);
         double sigma = sigma0 + sigma1;
         if (split == -1 | | sigma < var)
            { split = j; var = sigma; var0 = sigma0; }
   if (split == -1)
      { var0 = 1.0; var = 2.0; split = Random() * dim; }
   return split:
```

Test Results

- Integrating a bivariate normal distribution
- Simple Monte-Carlo Integration
 - 100, 1000, 10000, 100000 evaluations
 - .002, .0006, .0002, .00006 standard error
- Recursive stratified sampling
 - 100, 1000, 10000, 100000 evaluations
 - .001, .0001, .00001, .000001 standard error

Enhancements

Randomize splits a little bit ...

 Use Halton's sequence (or similar) to select points

Today

- Monte Carlo Integration
 - Randomly distributed points
 - Points selected to fill space
 - Points targeted to high variance regions
- The last two strategies can be combined!

Recommended Reading

- Numerical Recipes
 - Chapter 7.6 7.8
- Available online at:
 - http://www.nr.com