
Programming in Cg g
Quick Start!

Biostatistics 615/815
Lecture 2Lecture 2

Last Lecture

Describe 3 algorithms for tackling the g g
connectivity problem

• Quick Find
• Quick UnionQuick Union
• Weighted Quick Union

Pictorial ComparisonPictorial Comparison
Quick Find Quick Union Weighted

Quick Find in C
// Data Initialization
for (i = 0; i < N; i++)

a[i] = i;

// Loop through connections
while (read_connection(p, q))

{
// h k h i i i hi b d// Check that input is within bounds
if (p < 0 || p >= N || q < 0 || q >= N) continue;

if (a[p] == a[q]) continue; // FIND operation

set = a[p]; // UNION operation
for (i = 0; i < N; i++)

if (a[i] == set)
a[i] = a[q];

print_connection(p, q);
unique_connections++;
}

Quick Union in C
// Loop through connections
while (read_connection(p, q))

{
// Check that input is within bounds
if (p < 0 || p >= N || q < 0 || q >= N) continue;

// FIND operation
i = a[p];i a[p];
while (a[i] != i)

i = a[i];

j = a[q];
hil ([j] ! j)while (a[j] != j)
j = a[j];

if (i == j) continue;

// UNION operation
a[i] = j;

print_connection(p, q);
unique connections++;unique_connections++;
}

Weighted Quick Union in C
for (i = 0; i < N; i++) // Initialize weights

weight[i] = 1; //

while (read_connection(p, q)) // Loop through connections
{{
// Check that input is within bounds
if (p < 0 || p >= N || q < 0 || q >= N) continue;

i = a[p]; // FIND operation
hil ([i] ! i) //while (a[i] != i) //
i = a[i]; // Identify group to which items p and q

// belong, by tracing up their respective
j = a[q]; // chains
while (a[j] != j) //([j] j) //

j = a[j]; //
//

if (i == j) continue; //

if (weight[i] < weight[j]) // UNION operationif (weight[i] < weight[j]) // UNION operation
{ a[i] = j; weight[j] += weight[i]; } //

else // Link smaller group to
{ a[j] = i; weight[i] += weight[j]; } // the larger one …

print_connection(p, q);
unique_connections++;
}

Today

How to compile and debug C programs
• On Windows, with Visual Studio
• On Unix (and Macs!), with GCC / GDB

Basics of Programming in C
• General organization of C programsGeneral organization of C programs
• C function libraries

Brief History of C

C was developed by Dennis Ritchie at
Bell Labs (1969 – 72)
• Support the new UNIX operating system
• Successor to B and BCPL

Strongly typed language
Dynamic memory allocationy y
User defined data structures

The Modern C/C++ Languages
High level languagesHigh level languages
• Relatively easy to understand

Portable language
• Work on desktop computers, mainframes and

mobile phonesob e p o es

Computers execute much more detailed, "lower-
level" instructionslevel instructions …

… compilers perform the necessary translation.

Anatomy of C Program

A collection of functions
• Receive a set of parameters
• D l l l i bl• Declare local variables
• Carry out processing
• Return a value• Return a value

main() functionmain() function
• Called to start the program

A C function definition
type function(argument_list)

{
variable declarations;_ ;

statements;
}}

Each function has a type
Each function argument has a type
Each local variable has a type

C libraries

Most programs are not built from scratch

Rely on pre-existing collections of functions
• Standard C Library, C++ Templates, KDE/Qt, GNU

Scientific LibraryScientific Library…

Header (h) files describe functions in theseHeader (.h) files describe functions in these
collections
• Accessed through #include statementsg

Very Basic C Program
/* C d i t d i fil *//* C code is stored in .c or .cpp files */

#include <stdio.h>

int main()
{
printf(“Hello, I am a program ...\n”);
printf(“... And I don’t do much.\n”);

return 0;
}

Now I have a program …
… how do I run it?… how do I run it?

In a UNIX Environment…
M f ill d i iMany of you will end up running your programs in a
Unix or Linux server

GNU tools are widely available and quite popularGNU tools are widely available and quite popular
• Start with a text editor, type in your code, then use …
• GCC / G++ to compile code
• GDB to debug and test codeg
• GPROF to collect performance metrics

… this approach has seriously steep learning curve.

I recommend a more friendly setting …
… write and debug code in a Windows PC or a Mac.

In a Windows PC or Mac
I d l i bi di i iliIntegrated toolsets exist combine editing, compiling,
debugging and extensive documentation

Mi ft Vi l St di / Vi l CMicrosoft Visual Studio / Visual C++
• Discounted versions available through the University

Turbo C++ ExplorerTurbo C++ Explorer
• Free version of Borland C++ Builder
• Available from www.turboexplorer.com

Xcode
• Included in Mac OS X (may have to find original DVD)

Getting Started:Getting Started:
Create a New Project

The first step is to create a new project.

Throughout the course, we will be focus
on data manipulation and analysis using

l li ticonsole applications

So, we’ll use a “Console Application”
template for our projects…

Fil | N File | New …

C++ Builder Visual StudioC++ Builder Visual Studio

Very Basic C Program
/* C d i t d i fil *//* C code is stored in .c or .cpp files */

#include <stdio.h>

int main()
{
printf(“Hello, I am a program ...\n”);
printf(“... And I don’t do much.\n”);

return 0;
}

R i th P Running the Program …

C++ Builder Visual StudioC++ Builder Visual Studio

Errors?

Compiler will list problems in your code
and you should be able to click on each
error message to identify problem …

… sometimes a single problem can lead
to many error messages.y g

Making our program moreMaking our program more…
“Useful”…

“Complicated”…

Variables in C

Must be declared before use

Each variable has a specific type
• integer
• floating point
• character

Names are case-sensitive

Another C Program
#include <stdio.h>

int Multiply(int x, int y)
{
int product = x * y;

return product;
}

int main()int main()
{
int x = 2;

printf(“%d * %d = %d\n”, x, x, Multiply(x, x));

return 0;
}

Executing Code Line by Line…g y
(TIP: place mouse over variables to see their contents)

C++ Builder Visual StudioC++ Builder Visual Studio

Basic Data Types in CBasic Data Types in C

Integer data typesInteger data types
• int, short, long

Floating point data types
• float, double

Character types
• char (which is also an integer!)

Pointers and user-defined types are also available

Integers

For most purposes the int type will do
•unsigned int for strictly positive quantities
•l l data t pe for storing large integers•long long data type for storing large integers

Typically store up to 31 or 63 digitsTypically, store up to 31 or 63 digits
• in base 2
• plus one digit for signp us o e d g t o s g
• range is about -2.1 to 2.1 billion (32 bit)

Counting digits in an int ...
int count_integer_bits()

{
int bits = 0;
int integer = 1;int integer = 1;

while (integer != 0)
{
bits++;
integer = integer * 2;
}

return bits;
}

Floating point numbers

Stored as exponent, mantissa and sign
• Representation varies between machines

Limited range and precision

0 1 0 0 0 0 0 0 0 1 0

sign exponent mantissa

Floating point data

Stored in exponential notation
• In base 2

Has limited accuracy
• Computing two similar quantities and evaluating theirComputing two similar quantities and evaluating their

difference can be especially inaccurate

Greater range than integer data
• Exact for small integers

Measuring accuracy of a double

/* Calculate precision of double */
double precision()

{{
double e = 1.0, temp;

do {do {
e = e * 0.5;
temp = 1.0 + e;

} while (temp > 1.0);} (p);

return e * 2.0;
}

Arithmetic has limited precision

You just saw examples where:
•a * 2 == 0 and a > 0…
•a + b == a and b > 0…

I li ti th li it f ith tiIn some applications, these limits of arithmetic
precision can make a lot of difference!

This is a feature of most computer applications

Flow Control Statements…
All k h i b d iAllow programs to make choices based on input
or results of previous operations

Most interesting programs will depend on
these…

Examples …
•if … else …
•d hil•do … while …
•while …
•for …

if … else …

if (expression)
statement1;

else
statement2;

When expression is true (or nonzero)
statement1 is executed; otherwisestatement1 is executed; otherwise
statement2 is executed.

Example

void Compare(int a, int b)
{{
if (a == b)

printf(“Values Match!\n”);printf(Values Match!\n);
else

printf(“Values are different!\n”);p ()
}

do … while …

do
statement;

while (expression);

statement is executed until e pressionstatement is executed until expression
evaluates to false (or zero).
statement is executed is executed at leaststatement is executed is executed at least
once.

Example:Example:
Measuring Precision for a double

/* Calculate precision of double */
double precision()

{{
double e = 1.0, temp;

do {do {
e = e * 0.5;
temp = 1.0 + e;

} while (temp > 1.0);} (p);

return e * 2.0;
}

while …

while (expression)p
statement;

statement is executed while
expression evaluates to trueexpression evaluates to true.
statement may never be executed.

Example:Example:
Counting digits in an int ...
int count_integer_bits()

{
int bits = 0;
int integer = 1;int integer = 1;

while (integer != 0)
{
bits++;
integer = integer * 2;
}

return bits;
}

for
for (initialization; condition; increment)

statement;

Executes initialization.

Whil i tWhile condition is true:
• Execute statement.
• Evaluate increment.

statement may never be executed.

Example:Example:
Searching for value in a list…
int search(int a[], int value, int start, int stop)

{
// Variable declarations
int iint i;

// Search through each item
for (i = start; i <= stop; i++)for (i start; i < stop; i++)

if (value == a[i])
return i;

// Search failed
return -1;
}

break and continue

continue
• Re-evaluates loop condition.
• If not finished, start a new cycle.

break
• Stop looping early.

S St d d C Lib iSome Standard C Libraries

Header File FunctionalityHeader File Functionality
ctype.h Information about characters
float.h Information about floating pointfloat.h Information about floating point
limits.h Information about integers
math h Common mathematical functionsmath.h Common mathematical functions
stdio.h Basic input / output functions
stdlib h Kitchen Sink!stdlib.h Kitchen Sink!
string.h String manipulation functions
time h Timetime.h Time

math.h, Mathematical Functions
d bl (d bl) d bl (d bl)double exp(double x);
• exponential of x

double log(double x);
• natural logarithm of x

double sqrt(double x);
• square root of x

double ceil(double x);
• smallest integer notnatural logarithm of x

double log10(double x);
• base-10 logarithm of x

double pow(double x, double y);

smallest integer not
less than x

double floor(double x);
• largest integer not

greater than xp (y)
• x raised to power y

d bl i (d bl)

greater than x
double fabs(double x);
• absolute value of x

double sin(double x);
double cos(double x); …
• Standard trigonometric functions

Important Library Functions

<stdio.h>
• Input and output

<stdlib.h>std b.
• Basic random numbers and memory allocation

Input / Output Functions

<stdio.h>
Default
•int printf(char * format, …);
•int scanf(char * format, …);

Fil b d f tiFile based functions
•FILE * fopen(char * filename, char * mode);
•int fclose(FILE * file);int fclose(FILE file);
•int fprintf(FILE * file, char * format, …);
•int fscanf(FILE * file, char * format, …);

printf

Writes formatted output

Format string controls how arguments
are converted to textare converted to text
• Parameters are printed as specied in % fields
•%[flags][width][.precision]type

• Otherwise, string is quoted

printf fields
FlFlags:
• “-” to left justify result
• “+” to show sign in positive numbers

WidthWidth
• Minimum number of characters to print

Precision
• N b f di it ft d i l (f fl ti i t)• Number of digits after decimal (for floating point)
• Maximum number of characters (for strings)

Type
• “ ” f t i• “s” for strings
• “d” for integers, “x” to print hexadecimal integers
• “f” for floating point, “e” for exponential notation, “g” for automatic

scanf

Reads formatted input

Format string defines input interpretationg p p
• Each %[type] field is converted and stored

Arguments should be addresses of
variables where input is to be stored

scanf fields

Field typesyp
• “s” for strings
• “d” for int variables
• “lld” for long long variables
• “f” for float variables
• “lf” for double variables

Example
#include <stdio.h>

int square(int x)
{
return x * x;;
}

int main()
{{
int number;

printf("Type a number:");
scanf("%d", &number);(,)
printf("The square of %d is %d.\n", number, square(number));

return 0;
}

Opening and closing files
FILE * fopen(char * filename, char * type);
• Opens file with filename
• If type is “wt”, a text file is opened for writingIf type is wt , a text file is opened for writing
• If type is “rt”, a text file is opened for reading
• Types “rb” and “wb” are analogous for binary files
• Returns NULL on failure• Returns NULL on failure

int fclose(FILE * file);int fclose(FILE file);
• Closes file
• Returns 0 on success

ExampleExample
#include <stdio.h>

int sqr(int x)
{ return x * x; }

int main()
{
int number;
FILE * output;

printf("Type a number:");
scanf("%d", &number);

output = fopen("results.txt", "wt");
fprintf(output, "The square of %d is %d\n“, number, sqr(number));
fclose(output);

return 0;
}

Basic Random Numbers

<stdlib.h>

int rand()
• Sample a uniformly distributed random integer

b t 0 d RAND MAXbetween 0 and RAND_MAX

void srand(int seed)void srand(int seed)
• Select the sequence of random numbers

specified by seedspecified by seed

Weighted Quick Union in C
// Initialize random generator
srand(1234);

// Generate M random connections
while (count++ < M)

{
// Pick random elements to connect
p = rand() % N;
q = rand() % N;

// FIND operation
for (i = a[p]; a[i] != i; i = a[i]) ;
f (j [] [j] ! j j [j])for (j = a[q]; a[j] != j; j = a[j]) ;
if (i == j) continue;

// UNION operation
if (weight[i] < weight[j])if (weight[i] < weight[j])

{ a[i] = j; weight[j] += weight[i]; }
else

{ a[j] = i; weight[i] += weight[j]; }

printf("%d %d is a new connection\n", p, q);
}

Weighted Quick Union in C
// Initialize random generator
srand(1234);

// Generate M random connections
while (count++ < M)

{
// This method generates better randomness in many computers
p = (int) (rand() * 1.0 * N / (RAND_MAX + 1.0));
q = (int) (rand() * 1.0 * N / (RAND_MAX + 1.0));

// FIND operation
for (i = a[p]; a[i] != i; i = a[i]) ;
f (j [] [j] ! j j [j])for (j = a[q]; a[j] != j; j = a[j]) ;
if (i == j) continue;

// UNION operation
if (weight[i] < weight[j])if (weight[i] < weight[j])

{ a[i] = j; weight[j] += weight[i]; }
else

{ a[j] = i; weight[i] += weight[j]; }

printf("%d %d is a new connection\n", p, q);
}

Today

Organization of C programsg p g

Basic data typesBasic data types

St d d lib iStandard libraries

