Programming in C
Quick Start!

Biostatistics 615/815
Lecture 2

-

Last Lecture

Describe 3 algorithms for tackling the
connectivity problem

Quick Find
Quick Union
Weighted Quick Union

N

-~

Pictorial Comparison
Quick FiInd Quick Union

Weighted

~

@@@@@@@
®

@O@ ® ®EO®
® @

@@@@
@@@@
Y eed”’ 8
Y eie 6

0@@8@@@00

@@@@@@
€)

@@@@@
@@@@
@@ ®
®
£8°8

@
@

©®®®®®@

@@@@@@

@@@@@

@ ONRCICRY
© @OV

8 eBw®”

Haedpe
®

eé’g‘ee

(3) @

\

@)
@@

o

®

EH)
®)
\@

&e
=)
&\
®

e
e/
@

Quick FInd In C

// Data Initialization

for (1 = 0; 1 < N; 1++)

afi] =

// Loop through connections
while (read_connection(p, Q))

{
// Check that i1nput i1s within bounds
IT (<0l p>=N1J]l g<01]] g> N) continue;

1T (alp] == a[q]) continue; // FIND operation

set = alp]; // UNION operation
for (1 = 0; 1 < Nj; 1++)
It (a[1] == set)
alr] = a[ql;

print_connection(p, q);
unique_connections++;

}

Quick Union in C

// Loop through connections
while (read _connection(p, q))

{
// Check that input i1s within bounds

ITM <0l p>N]Jlqg<O0]l qg>>= N) continue;

// FIND operation

1 = a[pl;
while (a[i] = i)
1 = a[i];
J = a[al;
while (aA[j] '=)
J = apbl;
iIT (1 == jJ) continue;

// UNION operation

afi] = 1J;
print_connection(p, Qq);
unique_connections++;

}

Weighted Quick Union in C

for (1 = 0; 1 < N; 1+t) // Initialize weights
weight[i] = 1; //

while (read_connection(p, qQ)) // Loop through connections
{

// Check that input i1s within bounds
IT M@<O0]lp>=N1Jl g<0]] g>= N) continue;

1 = a[p]; // FIND operation
while (a[i1] '= 1) //
1 = a[i1]; // ldentify group to which items p and q
// Dbelong, by tracing up their respective
J = a[ql; // chains
while (a[j] '= }) //
J = alil; //
//
ifT (1 == jJ) continue; //
1T (weight[i1] < weight[jJ]) // UNION operation
{ a[1] = jJ; weight[]j] += weight[1]; } 7/
else // Link smaller group to

{ a[j] = 1; weight[1] += weight[j]; } // the larger one ..

print_connection(p, q);
unique_connections++;

}

-

Today

N

How to compile and debug C programs
On Windows, with Visual Studio
On Unix (and Macs!), with GCC / GDB

Basics of Programming in C
General organization of C programs
C function libraries

~

Brief History of C

C was developed by Dennis Ritchie at
Bell Labs (1969 — 72)

Support the new UNIX operating system
Successor to B and BCPL

Strongly typed language
Dynamic memory allocation
User defined data structures

4 N

The Modern C/C++ Languages

High level languages
Relatively easy to understand

Portable language

Work on desktop computers, mainframes and
mobile phones

Computers execute much more detailed, "lower-
level” instructions ...

... compilers perform the necessary translation. /

N

-

Anatomy of C Program

N

A collection of functions
Receive a set of parameters
Declare local variables
Carry out processing
Return a value

main() function
Called to start the program

-

A C function definition

type function(argument list)
{

variable declarations;

statements;

}

Each function has a type
Each function argument has a type
Each local variable has a type

N

-

C libraries

N

Most programs are not built from scratch

Rely on pre-existing collections of functions

Standard C Library, C++ Templates, KDE/Qt, GNU
Scientific Library...

Header (.h) files describe functions in these
collections
Accessed through #include statements

%

4 N

Very Basic C Program

/* C code 1s stored In .c or .cpp files */
#include <stdio.h>

int main()

{

printf(“Hello, 1| am a program ...\n");
printf(“... And 1 don’t do much.\n");
return O;

¥

_ /

Now | have a program ...
... how do I run rt?

-

In a UNIX Environment...

Many of you will end up running your programs in a
Unix or Linux server

GNU tools are widely available and quite popular
Start with a text editor, type in your code, then use ...
GCC / G++ to compile code
GDB to debug and test code
GPROF to collect performance metrics

.. this approach has seriously steep learning curve.

| recommend a more friendly setting ...
... write and debug code in a Windows PC or a Mac. /

N

4 N

In a Windows PC or Mac

Integrated toolsets exist combine editing, compiling,
debugging and extensive documentation

Microsoft Visual Studio / Visual C++
Discounted versions available through the University

Turbo C++ Explorer
Free version of Borland C++ Builder
Available from

Xcode
Included in Mac OS X (may have to find original DVD)

= /

/Getting Started. \
Create a New Project

The first step Is to create a new project.

Throughout the course, we will be focus
on data manipulation and analysis using
console applications

So, we'll use a “Console Application”
template for our projects...

= /

File | New ...

C++ Builder

Visual Studio

New Project m
a Raliems Project types: Templates:
Iterm Categaries: =-Visual C++ Visual Studio installed templates
= - : ATL ,ﬂWmBZ Console Application FEwinzz Project
4[] C++Builder Projects % .E. @ % LClR o Tomoare

7 Active i General ,:y P

{71 C++Builder Files Console Control Panel Dynamic-link 1MDI LMFC s Search Onling Templates..

71 WCL for the Wweb

1 webBroker
1 wehServices

-7 Other Files
{77 Unit Test
-7 weh Documents

Application Application Library Application

@ B

Package SOI Service Static Library

Application Application

YCL Forms
Application

o[e ||

Help

Smart Device

- Other Languages
- Other Project Types

A project for creating a Win32 console application

Name: <Enter_name>
Location: ChUsers\Goncalo\DocumentsiYisual Studic 2005\Projects
Solution: Create new Solution

Solution Name: <Enter_name>

& I Create directory for solution

4 N

Very Basic C Program

/* C code 1s stored In .c or .cpp files */
#include <stdio.h>

int main()

{

printf(“Hello, 1| am a program ...\n");
printf(“... And 1 don’t do much.\n");
return O;

¥

_ /

Running the Program ...

C++ Builder

Run| Component Tools Window Help b
b Run Fo |
! RunWithout Debugging Shift+Ctrl+F8

iFi Parameters..

e Load Process..,
& Attach to Process..

Fx Register ActiveX Server
Unregister ActiveX Server

& Step Over F8
& Trace Into F7
‘st Trace to Next Source Line Shift+F7 &
M Run to Cursar F4
&' Run Until Return Shift+F8

2 Show Execution Point

Il Frogram Pause

Program Reset Ctri+F2
ZF Detach From Program

13, Inspect.
BEvaluate/Maodify... Ctrl+F7
32 AddWatch... Cirl+F5

Add Breakpoint 3

Visual Studio

Debug | Tools Window Community Help

Windows b
‘P Start Debugging F5
: Start Without Debugging Ctrl+F5
d. Attach to Process..,

Exceptions.. Ctri+Alt+E
5= steplnto F11
[Z Step Over F10

Toggle Breakpoint Fa

New Breakpoint b

-

Errors?

N

Compiler will list problems in your code
and you should be able to click on each
error message to identify problem ...

... Sometimes a single problem can lead
to many error messages.

Making our program more...
“Useful”...
“Complicated”...

-

Variables in C

Must be declared before use

Each variable has a specific type
Integer
floating point
character

Names are case-sensitive

Another C Program

#include <stdio.h>

int Multiply(int x, int y)
{

int product = X * y;

return product;

+
int main()
{
int x = 2;

printf(“%d * %d = %d\n”, x, x, Multiply(x, x));

return O;

}

-

Executing Code Line by Line...

(TIP: place mouse over variables to see their contents)

C++ Bu

lder

Run| Component Tools Window Help 2
B Run Fo
¥ Run Without Debugging Shift+Ctrl +F@
iFi Parameters..

e Load Process..

& Attach to Process..,

£ Register ActiveX Server

#F Unregister ActiveX Server

‘g‘t Step Over F8
& TraceInto F7
'gi Trace to Mext Source Line Shift+F7
i Run to Cursor F4
&' Run Until Return Shift+F8
WZ Show Execution Point

Il Program Pause

Program Reset Cirl+F2
2" Detach From Program

Q, Inspect.

Evaluate/Maodify.. Ctrl+F7
33 Add Watch... Ctrl+F5

Add Breakpoint

Visual Studio

b

| @

|I['rI

Debug | Tools Window Community Help

Windows

Continue

Stop Debugging
Detach All
Terminate &l

Restart

Attach to Process..

F5

Shift+F5

Ctrl+Shift+F5

N

Save Dump As..,

Exceptions.. Ctrl+Alt+E
= Steplnto F11
‘LE Step Cver F10
== Step Cut Shift+F11
& Quickwatch.. Ctrl+Alt+Q

Togagle Breakpoint Fa

MNew Breakpoint 2
-_.‘P Delete All Breakpoints Ctrl+5hift+F9
J Disable All Breakpoints

Basic Data Types in C

Integer data types
int, short, long

Floating point data types
float, double

Character types
char (which is also an integer!)

Pointers and user-defined types are also available

-

Integers

N

For most purposes the 1nt type will do
unsigned i1nt for strictly positive quantities
long long data type for storing large integers

Typically, store up to 31 or 63 digits
In base 2
plus one digit for sign
range is about -2.1 to 2.1 billion (32 bit)

%

4 N

Counting digits in an /nt ...

int count _integer bits()

{
int bits = 0;
int Iinteger = 1;

while (integer != 0)
{

bits++;
integer = integer * 2;

}

return bits;

}

_ /

-

Floating point numbers

Stored as exponent, mantissa and sign
Representation varies between machines

Limited range and precision

[Of1 0000000O100D00DO0O0O0OO0O0OO0LO0O0LO0DO0OLO0O0OLO0O0L0O0LO0 O

l l l

sign exponent mantissa

N

4 O

Floating point data

Stored In exponential notation
In base 2

Has limited accuracy

Computing two similar quantities and evaluating their
difference can be especially inaccurate

Greater range than integer data
Exact for small integers

N\ %

-~

Measuring accuracy of a double

~

\ }

/* Calculate precision of double */
double precision()

{
double e = 1.0, temp;

do {
e = e * 0.5;
temp = 1.0 + e;
} while (temp > 1.0);

return e * 2.0;

-

~

Arithmetic has limited precision

You just saw examples where:
a>*2==0anda > O...
a+ b ==aandb > O...

In some applications, these limits of arithmetic
precision can make a lot of difference!

This Is a feature of most computer applications

4 O

Flow Control Statements...

Allow programs to make choices based on input
or results of previous operations

Most interesting programs will depend on

these...
Examples ...
1t .. else ..
do .. while ..
while
for

N /

-

If ... else ...

1T (expression)
statementl;

else
statement?;

When expression is true (or nonzero)
statementl is executed:; otherwise
statement? Is executed.

%

-~

Example

-

voild Compare(int a,
1
1T (a b)
printf(““Values Match!\n’);
else
printf(““Values are different!\n”’);

int b)

}

J

-

do ... while ...

do
statement;

while (expression);

statement is executed until expression
evaluates to false (or zero).

statement is executed Is executed at least
once.

%

-~

Example: \
Measuring Precision for a double

/* Calculate precision of double */
double precision()

{
double e = 1.0, temp;

do {
e = e * 0.5;
temp = 1.0 + e;
} while (temp > 1.0);

return e * 2.0;

__ J

while ...

while (expression)
statement;

statement is executed while
expression evaluates to true.

statement may never be executed.

-~

Example:
Counting digits in an /nt ...

~

int count _integer bits()

{
int bits = 0;
int Iinteger = 1;

while (integer != 0)
{

bits++;
integer = integer * 2;

}

return bits;

}

-

-

for

for (initialization; condition; Increment)
statement;

Executes tni1tralization.

While condition is true:
Execute statement.
Evaluate increment.

statement may never be executed.

N

/Example: \

Searching for value In a list...

int search(int a[], int value, int start, int stop)

{
// Variable declarations
int 1;

// Search through each item
for (i = start; 1 <= stop; I++)
iIT (value == a[i1])
return 1i;

// Search failed
return -1;

N J

-

break and continue

continue

Re-evaluates loop condition.
If not finished, start a new cycle.

break
Stop looping early.

N

-

Some Standard C Libraries

Header File Functionality

ctype.h nformation about characters

float.h nformation about floating point

limits.h nformation about integers

math.h Common mathematical functions

stdio.h Basic input / output functions

stdlib.h Kitchen Sink!

string.h String manipulation functions
Qi me.h Time

)/

-

math.h, Mathematical Functions

N

double exp(double x);
exponential of x

double log(double x);
natural logarithm of x

double log10(double x);
base-10 logarithm of x

double pow(double x, double y);
X raised to powery

double sin(double x);

double cos(double x); ...
Standard trigonometric functions

double sqrt(double x);
square root of x
double ceil(double x);

smallest integer not
less than x

double floor(double x);

largest integer not
greater than x

double fabs(double x);
absolute value of x

-

Important Library Functions

~

<stdio.h>
Input and output

<stdlib_h>

Basic random numbers and memory allocation

/

4 N

Input / Output Functions

<stdio.h>

Default
int printf(char * format, .);
int scanf(char * format, ..));
File based functions

FILE * fopen(char * filename, char * mode);
int fclose(FILE * file);

int fprintf(FILE * file, char * format, .);

\\\¥ int fscanf(FILE * file, char * format, m);g///

-

printf

N

Writes formatted output

Format string controls how arguments
are converted to text

Parameters are printed as specied in % fields
®*p[flags][width]] -precision]type

Otherwise, string Is quoted

4 N

printf fields

Flags:
“-" to left justify result
“+” to show sign in positive numbers

Width

Minimum number of characters to print

Precision
Number of digits after decimal (for floating point)
Maximum number of characters (for strings)

Type
“s” for strings
“d” for integers, “X” to print hexadecimal integers

“f” for floating point, “e” for exponential notation, “g” for automatic

_ /

-

scanf

N

Reads formatted input

Format string defines input interpretation
Each %[type] field is converted and stored

Arguments should be addresses of
variables where input is to be stored

-

scanf fields

Field types
“s” for strings
“d” for Int variables
“lld” for long long variables
“f” for Float variables
“If” for doubl e variables

N

4 N

Example

#include <stdio.h>

Int square(int x)

{

return x * Xx;

}

int main()
L
i

nt number;

printf("'Type a number:");

scanf("'%d", &number);
printf(""The square of %d is %d.\n", number, square(number));

return O;
_ -

4 N

Opening and closing files

FILE * fopen(char * filename, char * type);
Opens file with filename
If type is “wt”, a text file is opened for writing
If type Is “rt”, a text file is opened for reading
Types “rb” and “wb” are analogous for binary files
Returns NULL on failure

int fclose(FILE * file);

Closes file
Returns O on success

= %

Example

#include <stdio.h>

int sqr{int x)
{ return x * x; }

int main()

{

int number;
FILE * output;

printf("'Type a number:");
scanf("'%d"", &number);

output = fopen(“'results.txt', "wt'");
fprintf(output, ""The square of %d 1s %d\n*“, number, sqr(number));
fclose(output);

return O;

}

4 N

Basic Random Numbers

<stdlib.h>

Int rand()

Sample a uniformly distributed random integer
between O and RAND_MAX

void srand(int seed)
Select the sequence of random numbers

\ specified by seed /

Weighted Quick Union in C

// Initialize random generator
srand(1234);

// Generate M random connections
while (count++ < M)

{

// Pick random elements to connect
p rand() % N;
q rand() % N;

// FIND operation

for (i afpl; a[i] '= 1; 1
for (J = a[ql; alil !'= j; J
it (1 == j) continue;

Q

Q

[T
e
o/ o/

// UNION operation
iIT (weight[i] < weight[j]D)

{ a[1] = j; weight[j] += weight[i]; }
else

{ a[j] = 1; weight[i1] += weight[j]; }

printf("'%d %d is a new connection\n", p, q);

}

Weighted Quick Union in C

// Initialize random generator
srand(1234);

// Generate M random connections
while (count++ < M)

{

// This method generates better randomness in many computers
p = (int) (rand() * 1.0 * N /7 (RAND_MAX + 1.0));
q = (int) (rand() * 1.0 * N / (RAND_MAX + 1.0));

// FIND operation

for (i afpl; a[i] '= 1; 1
for (J = a[ql; alil !'= j; J
it (1 == j) continue;

Q

Q

[T
e
o/ o/

// UNION operation
iIT (weight[i] < weight[j]D)

{ a[1] = j; weight[j] += weight[i]; }
else

{ a[j] = 1; weight[i1] += weight[j]; }

printf("'%d %d is a new connection\n", p, q);

}

-

Today

Organization of C programs

Basic data types

Standard libraries

N

