Principles of A/gorithm Analysis

Biostatistics 615/815
Lecture 3

Snapshot of Incoming Class

Homework Notes

- Provide a hard copy including
- Your Answers
- Your Code
- Write specific answer to each question
- Supported by table or graph if appropriate
- Source code
- Indented and commented, if appropriate

Office Hours

- Wednesdays
- 1:30 - 4:00 pm
- SPH Tower, M4614
- Alternatively, e-mail me at:
- goncalo@umich.edu

Last Week An Introduction to C

- Strongly typed language
- Variable and function types set explicitly
- Functional language
- Programs are a collection of functions
- Compiling and debugging C programs
- Setup a basic projects
- Review compile errors and warnings
- Step through code line by line
- Set breakpoints

Today

- Strategies for comparing algorithms
- Common relationships between algorithm complexity and input data
- Compare two simple search algorithms

Objectives

- Framework for
- Empirical Testing
- Theoretical Analysis
- Highlight performance characteristics of algorithms

Specific Questions

- Compare two algorithms for one task
- Predict performance in a new environment
- If we had a computer that was 10x faster and could store 10x more data, how would approach perform?
- Set values of algorithm parameters

Two Common Mistakes

- Ignore performance of algorithm
- Shun faster algorithms to avoid complexity in program
- Waiting for "simple" but inefficient algorithms to run, when efficient alternatives of modest complexity exist
- Too much weight on performance of algorithm
- Improving program that is already very fast not worth it
- Time spent tinkering with code is useful

Empirical analysis

- Given two algorithms ... which is better?
- Run both
- Say, algorithm A takes 3 seconds
- Say, algorithm B takes 30 seconds
- Empirical studies may not always be practical
- Some algorithms may take too long to run!
- Other algorithms may take too long to code...

Choices of Input Data

- Actual data
- Measures performance in use
- Random data
- Generic approach, may not be representative
- Perverse data
- Attempt worst case analysis

Limitations of Empirical Analysis

- Quality of implementation
- Is our favored implementation coded more carefully than another?
- Extraneous factors
- Compiler
- Machine
- Computer system

Limitations of Empirical Analysis

- Requires a working program
- Theoretical analysis is an alternative
- Estimate potential gains
- Predict effectiveness relative to new algorithms or computers (that may not yet exist)

Theoretical Analysis

- Predict performance of algorithm based on theoretical properties
- "Independent" of actual implementation
- Several constructs occur frequently in algorithm analysis

Limitations of Theoretical Analysis

- Efficiency can depend on compiler
- Efficiency may fluctuate with input data
- Some algorithms are not well understood

The idea...

- Given a code fragment

```
#Find parent of node i
i = a[i];
```

- Consider how many times it is executed
- But not how long each execution takes

Two typical analyses

- Average-case for random input
- Worst-case
- Are these representative of real world problems?
- Check with empirical predictions...

The Primary Parameter N

- Examples
- Number of parameters to likelihood function
- Number of items in dataset to be processed
- Number of characters in a string
- Size of file to be sorted
- Some other abstract measure of problem size
- With multiple inputs, focus on one at a time, while holding the others constant

Running time as a function of N

$f(\mathrm{~N})$	Description	Running time when N doubles...
1	constant	-
$\log N$	logarithmic	constant increase
N	linear	doubles
$N \log N$	log-linear	more than doubles
N^{2}	quadratic	increases fourfold
N^{3}	cubic	increases eightfold
2^{N}	exponential	running time squares

Running time as a function of N

- Multiple terms may be involved
e.g. $N+N \log N$
- Typically, we ignore
- Smaller terms
- Constant coefficient
- Focus on inner loop
- In rare cases, smaller terms and constant coefficient will be important

Time to Solve Large Problem

operations per second	Problem Size $\mathrm{N}=1,000,000$		
	N	$\mathrm{~N} \log \mathrm{~N}$	$\mathrm{~N}^{2}$
10^{6}	seconds	minutes	months
10^{9}	instant	instant	hours
10^{12}	instant	instant	seconds

Time to Solve Huge Problem

operations per second	Problem Size $\mathrm{N}=1,000,000,000$		
	N	$\mathrm{~N} \log \mathrm{~N}$	$\mathrm{~N}^{2}$
10^{6}	hours	days	never
10^{9}	seconds	minutes	centuries
10^{12}	instant	instant	months

Application

- Analysis of two search algorithms
- Each algorithm:
- Considers a set of items stored in an array
- Searches through items to decide whether a particular value occurs

Sequential Search

int search(int a[], int value, int start, int stop) \{
// Variable declarations
int i;
// Search through each item
for (i = start; i <= stop; i++)
if (value == a[i])
return i;
// Search failed
return -1;
\}

Sequential Search Properties

- Algorithm:
- Look through array sequentially, until we find a match
- Average cost
- If match found:

N/2

- If match not found:

N

- Actual cost depends on fraction of successful searches

Better Sequential Search

- If items are sorted...
- Stop unsuccessful search early, when we reach item with higher value
- Cost for unsuccessful searches is now N/2
- Overall, algorithm is still $\mathrm{O}(\mathrm{N})$

```
Binary Search
int search(int a[], int value, int start, int stop)
    {
    while (stop >= start)
    {
    // Find midpoint
    int mid = (start + stop) / 2;
    // Compare midpoint to value
    if (value == a[mid])
        return mid;
    // Reduce input in half !...
    if (value > a[mid])
        { start = mid + 1; }
    else
        { stop = mid - 1; }
    }
// Search failed
return -1;
}
```


Binary Search Properties

- Algorithm:
- Halve number of items to consider with each comparison
- Worst-case cost
- Maximum cost is never greater than $\log _{2} \mathrm{~N}$
- Much better than sequential search, but even better methods exist!

Sequential vs. Binary Search

	$M=1,000$			$M=10,000$			$M=100,000$
N	S	B	S	B	S	B	
125	1	1	13	2	130	20	
250	3	0	25	2		251	22
500	5	0	49	3	492	23	
1250	13	0	128	3	1276	25	
2500	26	1	267	3	$*$	28	

Big-Oh Notation

- Algorithm is $O(N)$ or $O(N \log N)$
${ }^{\circ}$ Common statement
- What does it mean?
- Summarizes performance for large N
- Focuses on leading terms of expression describing running time

Big-Oh Notation

- Consider function $g(N)$
- It is said to be $O(f(N))$
- If there exist c_{0} and N_{0} such that:
- $N>N_{0}$ implies $c_{0} f(N)>g(N)$

From N to Running Time...

- Common relationships
${ }^{-} \mathrm{N}^{2}$
${ }^{-} \log \mathrm{N}$
- $N \log N$
- N
- Describe examples of how these arise
- Cost of running program is C_{N}

$O\left(N^{2}\right)$

- Loop through input successively, eliminate one item at a time

$$
\begin{aligned}
C_{N} & =C_{N-1}+N \quad \text { for } N \geq 2, C_{1}=1 \\
& =C_{N-2}+(N-1)+N \\
& \cdots \\
& =1+2+\ldots+(N-1)+N \\
& =\frac{N(N+1)}{2}
\end{aligned}
$$

$O(\log N)$

- Recursive program, halves input in one step

$$
\begin{aligned}
C_{2^{n}} & =C_{2^{n-1}}+1 \quad \text { for } N \geq 2, C_{1}=1 \\
& =C_{2^{n-2}}+1+1 \\
& =C_{2^{n-3}}+3 \\
& \cdots \\
& =C_{2^{0}}+n \\
& =n+1 \\
N & =2^{n}
\end{aligned}
$$

O(N Iog N)

- Recursive program, processes each item, splits input into two halves, examines each one...

$$
\begin{aligned}
C_{N} & =2 C_{N / 2}+N \quad \text { for } N \geq 2, C_{1}=0 \\
C_{2^{n}} & =2 C_{2^{n-1}}+2^{n} \\
\frac{C_{2^{n}}}{2^{n}} & =\frac{2 C_{2^{n-1}}+2^{n}}{2^{n}} \\
& =\frac{C_{2^{n-1}}}{2^{n-1}}+1 \\
& =\frac{C_{2^{n-2}}}{2^{n-2}}+1+1 \\
& \cdots \\
& =n
\end{aligned}
$$

O(2N)

- Halves input, must examine each item...

$$
\begin{aligned}
C_{N} & =C_{N / 2}+N \quad \text { for } N \geq 2, C_{1}=1 \\
& =N+\frac{N}{2}+\frac{N}{4}+\frac{N}{8}+\ldots \\
& \approx 2 N
\end{aligned}
$$

Summary

- Outline principles for analysis of algorithms
- Introduced some common relationships between N and running time
- Described two simple search algorithms

Further Reading

- Read chapter 2 of Sedgewick

Tip of the Day: Defensive Programming

- Document code and programs
- Indicate intended purpose
- Specify required inputs
- Always indicate author
- Check for error conditions

