Can you describe the QuickSort Algorithm?

Can you describe Simulated Annealing?
Homework Notes

- Provide a hard copy including
 - Your Answers
 - Your Code

- Write specific answer to each question
 - Supported by table or graph if appropriate

- Source code
 - Indented and commented, if appropriate
Office Hours

- Wednesdays
 - 1:30 – 4:00 pm
 - SPH Tower, M4614

- Alternatively, e-mail me at:
 - goncalo@umich.edu
Last Week
An Introduction to C

- Strongly typed language
 - Variable and function types set explicitly

- Functional language
 - Programs are a collection of functions

- Compiling and debugging C programs
 - Setup a basic projects
 - Review compile errors and warnings
 - Step through code line by line
 - Set breakpoints
Today

- Strategies for comparing algorithms
- Common relationships between algorithm complexity and input data
- Compare two simple search algorithms
Objectives

- Framework for
 - Empirical Testing
 - Theoretical Analysis

- Highlight performance characteristics of algorithms
Specific Questions

- Compare two algorithms for one task

- Predict performance in a new environment
 - If we had a computer that was 10x faster and could store 10x more data, how would approach perform?

- Set values of algorithm parameters
Two Common Mistakes

- Ignore performance of algorithm
 - Shun faster algorithms to avoid complexity in program
 - Waiting for “simple” but inefficient algorithms to run, when efficient alternatives of modest complexity exist

- Too much weight on performance of algorithm
 - Improving program that is already very fast not worth it
 - Time spent tinkering with code is useful
Empirical analysis

- Given two algorithms … which is better?

- Run both
 - Say, algorithm A takes 3 seconds
 - Say, algorithm B takes 30 seconds

- Empirical studies may not always be practical
 - Some algorithms may take too long to run!
 - Other algorithms may take too long to code…
Choices of Input Data

- Actual data
 - Measures performance in use

- Random data
 - Generic approach, may not be representative

- Perverse data
 - Attempt worst case analysis
Limitations of Empirical Analysis

- **Quality of implementation**
 - Is our favored implementation coded more carefully than another?

- **Extraneous factors**
 - Compiler
 - Machine
 - Computer system
Limitations of Empirical Analysis

- Requires a working program

- Theoretical analysis is an alternative
 - Estimate potential gains

- Predict effectiveness relative to new algorithms or computers (that may not yet exist)
Theoretical Analysis

- Predict performance of algorithm based on theoretical properties
- “Independent” of actual implementation
- Several constructs occur frequently in algorithm analysis
Limitations of Theoretical Analysis

- Efficiency can depend on compiler
- Efficiency may fluctuate with input data
- Some algorithms are not well understood
The idea...

- Given a code fragment

  ```
  #Find parent of node i
  i = a[i];
  ```

- Consider how many times it is executed
- But not how long each execution takes
Two typical analyses

- Average-case for random input
- Worst-case

- Are these representative of real world problems?
 - Check with empirical predictions…
The Primary Parameter N

- **Examples**
 - Number of parameters to likelihood function
 - Number of items in dataset to be processed
 - Number of characters in a string
 - Size of file to be sorted
 - Some other abstract measure of problem size

- With multiple inputs, focus on one at a time, while holding the others constant
Running time as a function of N

<table>
<thead>
<tr>
<th>$f(N)$</th>
<th>Description</th>
<th>Running time when N doubles…</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>constant</td>
<td>-</td>
</tr>
<tr>
<td>$\log N$</td>
<td>logarithmic</td>
<td>constant increase</td>
</tr>
<tr>
<td>N</td>
<td>linear</td>
<td>doubles</td>
</tr>
<tr>
<td>$N \log N$</td>
<td>log-linear</td>
<td>more than doubles</td>
</tr>
<tr>
<td>N^2</td>
<td>quadratic</td>
<td>increases fourfold</td>
</tr>
<tr>
<td>N^3</td>
<td>cubic</td>
<td>increases eightfold</td>
</tr>
<tr>
<td>2^N</td>
<td>exponential</td>
<td>running time squares</td>
</tr>
</tbody>
</table>
Running time as a function of N

- Multiple terms may be involved
 - e.g. $N + N \log N$

- Typically, we ignore
 - Smaller terms
 - Constant coefficient
 - Focus on inner loop

- In rare cases, smaller terms and constant coefficient will be important
Time to Solve Large Problem

<table>
<thead>
<tr>
<th>operations per second</th>
<th>Problem Size N = 1,000,000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>10^6</td>
<td>seconds</td>
</tr>
<tr>
<td>10^9</td>
<td>instant</td>
</tr>
<tr>
<td>10^{12}</td>
<td>instant</td>
</tr>
</tbody>
</table>
Time to Solve Huge Problem

<table>
<thead>
<tr>
<th>operations per second</th>
<th>Problem Size $N = 1,000,000,000$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>10^6</td>
<td>hours</td>
</tr>
<tr>
<td>10^9</td>
<td>seconds</td>
</tr>
<tr>
<td>10^{12}</td>
<td>instant</td>
</tr>
</tbody>
</table>
Application

- Analysis of two search algorithms

- Each algorithm:
 - Considers a set of items stored in an array
 - Searches through items to decide whether a particular value occurs
int search(int a[], int value, int start, int stop)
{
 // Variable declarations
 int i;

 // Search through each item
 for (i = start; i <= stop; i++)
 {
 if (value == a[i])
 return i;
 }

 // Search failed
 return -1;
}
Sequential Search Properties

- **Algorithm**: Look through array sequentially, until we find a match.

- **Average cost**
 - If match found: \(N/2 \)
 - If match not found: \(N \)

- **Actual cost depends on fraction of successful searches**
Better Sequential Search

- If items are sorted...

- Stop unsuccessful search early, when we reach item with higher value
 - Cost for unsuccessful searches is now $N/2$

- Overall, algorithm is still $O(N)$
Binary Search

```c
int search(int a[], int value, int start, int stop) {
    while (stop >= start) {
        // Find midpoint
        int mid = (start + stop) / 2;

        // Compare midpoint to value
        if (value == a[mid])
            return mid;

        // Reduce input in half !...
        if (value > a[mid])
            { start = mid + 1; }
        else
            { stop = mid - 1; }
    }

    // Search failed
    return -1;
}
```
Binary Search Properties

- **Algorithm:**
 - Halve number of items to consider with each comparison

- **Worst-case cost**
 - Maximum cost is never greater than $\log_2 N$

- Much better than sequential search, but even better methods exist!
Sequential vs. Binary Search

Timings in seconds, for M searches in table of N elements

<table>
<thead>
<tr>
<th>N</th>
<th>S</th>
<th>B</th>
<th>S</th>
<th>B</th>
<th>S</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>1</td>
<td>1</td>
<td>13</td>
<td>2</td>
<td>130</td>
<td>20</td>
</tr>
<tr>
<td>250</td>
<td>3</td>
<td>0</td>
<td>25</td>
<td>2</td>
<td>251</td>
<td>22</td>
</tr>
<tr>
<td>500</td>
<td>5</td>
<td>0</td>
<td>49</td>
<td>3</td>
<td>492</td>
<td>23</td>
</tr>
<tr>
<td>1250</td>
<td>13</td>
<td>0</td>
<td>128</td>
<td>3</td>
<td>1276</td>
<td>25</td>
</tr>
<tr>
<td>2500</td>
<td>26</td>
<td>1</td>
<td>267</td>
<td>3</td>
<td>*</td>
<td>28</td>
</tr>
</tbody>
</table>
Big-Oh Notation

- Algorithm is $O(N)$ or $O(N \log N)$
 - Common statement
 - What does it mean?

- Summarizes performance for large N

- Focuses on leading terms of expression describing running time
Consider function \(g(N) \)

It is said to be \(O(f(N)) \)

If there exist \(c_0 \) and \(N_0 \) such that:

\[N > N_0 \text{ implies } c_0 f(N) > g(N) \]
From N to Running Time…

- Common relationships
 - N^2
 - $\log N$
 - $N \log N$
 - N

- Describe examples of how these arise
- Cost of running program is C_N
$O(N^2)$

- Loop through input successively, eliminate one item at a time

\[
C_N = C_{N-1} + N \quad \text{for } N \geq 2, \quad C_1 = 1
\]
\[
= C_{N-2} + (N-1) + N
\]
\[
\vdots
\]
\[
= 1 + 2 + \ldots + (N-1) + N
\]
\[
= \frac{N(N+1)}{2}
\]
O(\log N)

- Recursive program, halves input in one step

\[
C_{2^n} = C_{2^{n-1}} + 1 \quad \text{for } N \geq 2, \quad C_1 = 1
\]
\[
= C_{2^{n-2}} + 1 + 1
\]
\[
= C_{2^{n-3}} + 3
\]
\[
\vdots
\]
\[
= C_{2^0} + n
\]
\[
= n + 1
\]
\[
N = 2^n
\]
$O(N \log N)$

- Recursive program, processes each item, splits input into two halves, examines each one...

\[
C_N = 2C_{N/2} + N \quad \text{for } N \geq 2, \quad C_1 = 0
\]

\[
C_{2^n} = 2C_{2^{n-1}} + 2^n
\]

\[
\frac{C_{2^n}}{2^n} = \frac{2C_{2^{n-1}} + 2^n}{2^n}
\]

\[
= \frac{C_{2^{n-1}}}{2^{n-1}} + 1
\]

\[
= \frac{C_{2^{n-2}}}{2^{n-2}} + 1 + 1
\]

\[
= n
\]
Halves input, must examine each item...

\[C_N = C_{N/2} + N \quad \text{for } N \geq 2, \quad C_1 = 1 \]

\[= N + \frac{N}{2} + \frac{N}{4} + \frac{N}{8} + \ldots \]

\[\approx 2N \]
Summary

- Outline principles for analysis of algorithms
- Introduced some common relationships between N and running time
- Described two simple search algorithms
Further Reading

- Read chapter 2 of Sedgewick
Tip of the Day: Defensive Programming

- Document code and programs
 - Indicate intended purpose
 - Specify required inputs
 - Always indicate author

- Check for error conditions