
Principles of Algorithm g
Analysis

Biostatistics 615/815
Lecture 3Lecture 3



Snapshot of Incoming Class
Programming Languages

20

25

Programming Languages

5

10

15

Can you describe the 
QuickSort Algorithm?

Can you describe
Simulated Annealing?

0
R C/C++ MatLab SAS Java Other

QuickSort Algorithm?

No

Yes

Maybe

Simulated Annealing?

No

Yes

Maybey

Blank

y

Blank



Homework Notes

Provide a hard copy including
• Your Answers
• Your Code• Your Code

Write specific answer to each questionWrite specific answer to each question
• Supported by table or graph if appropriate

Source code
• Indented and commented, if appropriate



Office Hours

Wednesdays
• 1:30 – 4:00 pm
• SPH Tower, M4614

Alternatively, e-mail me at:
• goncalo@umich.edu



Last WeekLast Week
An Introduction to C

S l d lStrongly typed language
• Variable and function types set explicitly

Functional language
• Programs are a collection of functions

Compiling and debugging C programs
• Setup a basic projects
• Review compile errors and warnings
• Step through code line by line
• Set breakpoints



Today

Strategies for comparing algorithms

Common relationships between 
algorithm complexity and input dataalgorithm complexity and input data

Compare two simple search algorithmsCompare two simple search algorithms



Objectives

Framework for 
• Empirical Testing
• Theoretical Analysis

Highlight performance characteristics of 
algorithms



Specific Questions

Compare two algorithms for one task

Predict performance in a new environment
• If we had a computer that was 10x faster and could 

store 10x more data how would approach perform?store 10x more data, how would approach perform?

Set values of algorithm parametersSet values of algorithm parameters



Two Common Mistakes

Ignore performance of algorithm
• Shun faster algorithms to avoid complexity in program
• W iti f “ i l ” b t i ffi i t l ith t• Waiting for “simple” but inefficient algorithms to run, 

when efficient alternatives of modest complexity exist

Too much weight on performance of algorithm
• Improving program that is already very fast not worth it
• Time spent tinkering with code is useful



Empirical analysis

Given two algorithms … which is better?

Run both
• Say, algorithm A takes 3 seconds
• Say algorithm B takes 30 secondsSay, algorithm B takes 30 seconds

Empirical studies may not always be practicalp y y p
• Some algorithms may take too long to run!
• Other algorithms may take too long to code…



Choices of Input Data

Actual data
• Measures performance in use

Random data
• G i h t b t ti• Generic approach, may not be representative

Perverse dataPerverse data
• Attempt worst case analysis



Limitations of Empirical Analysis

Quality of implementation
• Is our favored implementation coded more 

carefully than another?

Extraneous factors
• Compiler
• Machine
• Computer system



Limitations of Empirical Analysis

Requires a working program

Theoretical analysis is an alternative
• Estimate potential gains

Predict effectiveness relative to new 
l ith t (th t talgorithms or computers (that may not 

yet exist)



Theoretical Analysis

Predict performance of algorithm based 
on theoretical properties

“Independent” of actual implementationIndependent  of actual implementation

Several constructs occur frequently inSeveral constructs occur frequently in 
algorithm analysis



Limitations of Theoretical Limitations of Theoretical 
Analysis

Efficiency can depend on compilery p p

Efficiency may fluctuate with input dataEfficiency may fluctuate with input data

S l ith t ll d t dSome algorithms are not well understood



The idea…

Given a code fragment

#Find parent of node i
i = a[i];

Consider how many times it is executedCo s de o a y t es t s e ecuted
But not how long each execution takes



Two typical analyses

Average-case for random input

Worst-case

Are these representative of real world 
problems?problems?
• Check with empirical predictions…



The Primary Parameter N

Examples
• Number of parameters to likelihood function
• N b f it i d t t t b d• Number of items in dataset to be processed
• Number of characters in a string
• Size of file to be sortedSize of file to be sorted
• Some other abstract measure of problem size

With multiple inputs, focus on one at a time, 
while holding the others constant



Running time as a function of Ng

f(N) Description Running time when N 
doubles…

1 constant -

log N logarithmic constant increaselog N logarithmic constant increase

N linear doubles

N l N l li h d blN log N log-linear more than doubles

N2 quadratic increases fourfold

N3 cubic increases eightfold

2N exponential running time squaresp g q



Running time as a function of N
Multiple terms may be involved
• e.g. N + N log N

Typically, we ignore
• Smaller terms
• Constant coefficient
• Focus on inner loop

In rare cases, smaller terms and constant 
coefficient will be important



Time to Solve Large Problem

operations 
per second

Problem Size N = 1,000,000

per second N N log N N2

106 seconds minutes months106 seconds minutes months

109 instant instant hours

1012 instant instant seconds



Time to Solve Huge Problem

operations 
per second

Problem Size N = 1,000,000,000

per second N N log N N2

106 hours days never106 hours days never

109 seconds minutes centuries

1012 instant instant months



Application

Analysis of two search algorithms

Each algorithm:
• Considers a set of items stored in an arrayConsiders a set of items stored in an array
• Searches through items to decide whether a 

particular value occurs



Sequential Search
int search(int a[], int value, int start, int stop)

{
// Variable declarations
int iint i;

// Search through each item
for (i = start; i <= stop; i++)for (i  start; i <  stop; i++)

if (value == a[i])
return i;

// Search failed
return -1;
}



Sequential Search Properties

Algorithm:
• Look through array sequentially, until we find a match

Average cost
• If match found: N/2If match found: N/2
• If match not found: N

Actual cost depends on fraction of successful 
searches



Better Sequential Search

If items are sorted…

Stop unsuccessful search early, when 
we reach item with higher valuewe reach item with higher value
• Cost for unsuccessful searches is now N/2

Overall, algorithm is still O(N)



Binary SearchBinary Search
int search(int a[], int value, int start, int stop)

{
while (stop >= start)while (stop >  start)

{
// Find midpoint
int mid = (start + stop) / 2;

// Compare midpoint to value
if (value == a[mid]) 

return mid;

// Reduce input in half !...
if (value > a[mid])

{ start = mid + 1; }
elseelse

{ stop = mid - 1; }
}

// Search failed// Sea c a ed
return -1;
}



Binary Search Properties

Algorithm:
• Halve number of items to consider with each 

comparisoncomparison

Worst-case costWorst case cost
• Maximum cost is never greater than log2 N 

Much better than sequential search, but even 
better methods exist!



Sequential vs. Binary Search

M = 1,000 M = 10,000 M = 100,000
N S B S B S B

125 1 1 13 2 130 20

250 3 0 25 2 251 22250 3 0 25 2 251 22

500 5 0 49 3 492 23

1250 13 0 128 3 1276 25

2500 26 1 267 3 * 28
Timings in seconds, for M searches in table of N elements



Big-Oh Notation

Algorithm is O(N) or O(N log N)
• Common statement
• Wh d i ?• What does it mean?

Summarizes performance for large NSummarizes performance for large N

F l di t f iFocuses on leading terms of expression 
describing running time



Big-Oh Notation

Consider function g(N)

It is said to be O(f(N))

If there exist c0 and N0 such that:

• N > N0 implies c0f(N) > g(N)



From N to Running Time…

Common relationships 
• N2

• l N• log N
• N log N
• N• N

Describe examples of how these ariseDescribe examples of how these arise
Cost of running program is CN



O(N2)O(N2)

Loop through input successively, eliminate 
one item at a time

)1(
1  ,2for       

2

11

+−+=
=≥+=

−

−

NNC
CNNCC

N

NN

)1(...21
...

+−+++= NN

2
)1( +

=
NN



O(log N)

Recursive program, halves input in one step
CNCC nn 1  ,2for       11 122
=≥+= −

C

C

n

n

3

11

3

2

2

2

22

+=

++=

−

−

nC

1

...
02
+=

nN
n
2

1
=

+=



O(N l  N)O(N log N)
Recursive program, processes each item, splits p g p p
input into two halves, examines each one…

CNNCC NN =≥+= 0  ,2for       2 12/

CC

CC
n

n

nn

nn

+
=

+=

−

−

22

22

22

22

1

1

C
n

nn

n
+= −

− 1
2

22

1
2 1

C
n

n
++= −

−

...

11
2 2

2 2

n=



O(2N)O(2N)

Halves input, must examine each item…p ,

NNNN

CNNCC NN 1  ,2for       12/

++++

=≥+=

N

N

2

...
842

≈

++++=



Summary

Outline principles for analysis of 
algorithms

Introduced some common relationshipsIntroduced some common relationships 
between N and running time

Described two simple search algorithms



Further Reading

Read chapter 2 of Sedgewick



Tip of the Day:Tip of the Day:
Defensive Programming

Document code and programs
• Indicate intended purpose
• Specify required inputs
• Always indicate author

Check for error conditionsC ec o e o co d t o s


