
Sorting AlgorithmsSorting Algorithms

Biostatistics 615/815
Lecture 5Lecture 5

815 Projects

33% of your overall grade

Hand-out details choice of 6 projects
• MCMC evaluation of contingency table p-values
• Rapid fitting of logistic regression models
• Classify texts according to word distribution
• Search for similar phrases in two texts
• Fit a multivariate normal mixture distribution
• Align short sequence reads• Align short sequence reads

815 Projects – Next Step

Rank project options

E-mail me your choices by Friday
• My address: goncalo@umich eduMy address: goncalo@umich.edu
• Subject: 815 Project

Projects should be completed in pairs
• If you have a partner preference let me know!• If you have a partner preference, let me know!

Last Lecture …

Recursive Functions
• Natural expression for many algorithms

Dynamic Programmingy g g
• Automatic strategy for generating efficient

versions of recursive algorithms

Today …

Properties of Sorting Algorithms

Elementary Sorting Algorithms
• Selection SortSelection Sort
• Insertion Sort
• Bubble SortBubble Sort

Applications of Sorting

Facilitate searching
• Building indices

Identify quantiles of a distribution

Identify unique values

Browsing data

Elementary Methods

Suitable for
• Small datasets
• S i li d li i• Specialized applications

P l d l h dPrelude to more complex methods
• Illustrate ideas
• I t d t i l• Introduce terminology
• Sometimes useful complement

... but beware!

Elementary sorts are very inefficient
• Typically, time requirements are O(N2)

Probably, most common inefficiency in y y
scientific computing
• Make programs “break” with large datasets

Aim

Rearrange a set of keys
• Using some predefined order

• I t• Integers
• Doubles
• Indices for records in a database

Keys stored as array in memory
• More complex sorts when we can only load

part of the data

Basic Building Blocks

An type for each element
#define Item int

Compare two elements

Exchange two elements

Compare and exchange two elements

Comparing Two Elements

Define a function to compare two elements

bool isLess(Item a, Item b)
{ return a < b; }

Alternative is to use macros, but I don’t recommend it

#define isLess(a,b) ((a)<(b))

Exchanging Two Elements
The best way is to use a C++ functionThe best way is to use a C++ function

void Exchange(Item & a, Item & b)
{ Item temp = a; a = b; b = temp; }{ Item temp = a; a = b; b = temp; }

But using a macro is still an alternative

#define Exchange(a,b) \
{ \
It t () \Item tmp = (a); \
(a) = (b); \
(b) = tmp; \
}}

Comparing And Exchange

Using C++ function

Item CompExch(Item & a Item & b)Item CompExch(Item & a, Item & b)
{
if (isLess(b, a))

Exchange(a b);Exchange(a, b);
}

Using a macrog

#define CompExch(a,b) \
if (isLess((b),(a))) Exchange((a),(b));

A Simple Sort

Gradually sort the array by:

Sorting the first 2 elements
Sorting the first 3 elementsSorting the first 3 elements
…
S t ll N l tSort all N elements

A Simple Sort Routine
void sort(Item a[], int start, int stop)
{
int i, j;, j

for (i = start + 1; i <= stop; i++)
for (j = i; j > start; j--)for (j = i; j > start; j--)

CompExch(a[j-1], a[j]);
}

Properties of this Simple Sort

Non-adaptive
• Comparisons do not depend on data

Stable
• Preserves relative order for duplicates

Requires O(N2) running time

Sorts We Will Examine Today

Selection Sort

Insertion SortInsertion Sort

B bbl S tBubble Sort

Recipe: Selection Sort

Find the smallest element
• Place it at beginning of array

Find the next smallest element
• Place it in the second slot

…

C Code: Selection Sort
void sort(Item a[], int start, int stop)
{
int i, j;

for (i = start; i < stop; i++)
{
int min = i;int min = i;
for (j = i + 1; j < stop; j++)

if (isLess(a[j], a[min])
min = j;j;

Exchange(a[i], a[min]);
}

}

Selection Sort

Notice:Notice:

Each exchange moves element
i t fi l itiinto final position.

Right portion of array looks random.g p y

Properties of Selection Sort

Running time does not depend on input
• Random data
• S d d• Sorted data
• Reverse ordered data…

Performs exactly N-1 exchanges

Most time spent on comparisons

Recipe: Insertion Sort

The “Simple Sort” we first considered

Consider one element at a time
• Place it among previously considered elementsPlace it among previously considered elements
• Must move several elements to “make room”

Can be improved, by “adapting to data”

Improvement I

Decide when further comparisons are
futile

Stop comparisons when we reach a
ll l tsmaller element

What speed improvement do you
expect?

Insertion Sort (I)
void sort(Item a[], int start, int stop)
{
int i, j;, j

for (i = start + 1; i <= stop; i++)
for (j = i; j > start; j--)for (j = i; j > start; j--)

if (isLess(a[j], a[j-1])
Exchange(a[j-1], a[j]);

else
break;

}

Improvement II

Notice that inner loop continues until:
• First element reached, or
• Smaller element reached

If smallest element is at the beginning…
• Only one condition to check

Insertion Sort (II)
void sort(Item a[], int start, int stop)
{
int i, j;

// This ensures that smallest element is at the beginning// g g
for (i = stop; i > start; i--)
CompExch(a[i-1], a[i]);

// Now, we don’t need to check that j > start
for (i t t + 2 i < t i++)for (i = start + 2; i <= stop; i++)
{
int j = i;
while (isLess(a[j], a[j-1]))

{
Exchange(a[j], a[j-1]);
j--;
}

}
}}

Improvement III

The basic approach requires many exchanges
involving each element

Instead of carrying out many exchanges …

Find out position for the new element and shift
l t t th i ht t kelements to the right to make room

Insertion Sort (III)
void sort(Item a[], int start, int stop)
{
int i, j;

for (i = stop; i > start; i--)(p; ;)
CompExch(a[i-1], a[i]);

for (i = start + 2; i <= stop; i++)
{
int j iint j = i;
Item val = a[j]; // Store the value of new element
while (isLess(val, a[j-1])) // Proceed through larger elements

{
a[j] = a[j-1]; // Shifting things to the right …
j--;
}

a[j] = val; // Finally, insert new element in place
}

}}

Insertion Sort

Notice:

Elements in left portion of array
can still change positioncan still change position.

Right remains untouched.

Properties of Insertion Sort

Adaptive version running time depends
on input
• About 2x faster on random data
• Improvement even greater on sorted data
• Similar speed on reverse ordered data

Stable sort

Three Improvements Discussed

Improvement I: Early termination
Improvement II: Sentinelsp
Improvement III: “Shift” instead of “swap”

How would you rate their relative utility?
D lik ti k i ith d ?Do any seem like tinkering with code?

Recipe: Bubble Sort

Pass through the array
• Exchange elements that are out of order

Repeat until done…p

Very “popular”Very popular
• Very inefficient too!

C Code: Bubble Sort
void sort(Item a[], int start, int stop)
{
int i j;int i, j;

for (i = start; i <= stop; i++)
for (j = stop; j > i; j--)

CompExch(a[j-1], a[j]);
}}

Bubble Sort

Notice:

Each pass moves one element
into positioninto position.

Right portion of array is partially
sorted

Shaker Sort

Notice:

Things improve slightly if bubbleg p g y
sort alternates directions…

Notes on Bubble Sort

Similar to non-adaptive Insertion Sort
• Moves through unsorted portion of array

Similar to Selection Sort
• D h l t• Does more exchanges per element

Stop when no exchanges performedStop when no exchanges performed
• Adaptive, but not as effective as Insertion Sort

Selection Insertion Bubble

Performance Characteristics

Selection, Insertion, Bubble Sorts

All quadratic
• Running time differs by a constantRunning time differs by a constant

Which sorts do you think are stable?Which sorts do you think are stable?

Selection Sort

Exchanges
• N – 1

Comparisons
• N * (N 1) / 2• N * (N – 1) / 2

R i b t N2 / 2 tiRequires about N2 / 2 operations
Ignoring updates to min variable

Adaptive Insertion Sort
H lf E hHalf - Exchanges
• About N2 / 4 on average (random data)
• N * (N – 1) / 2 (worst case)() ()

Comparisons
• About N2 / 4 on average (random data)About N / 4 on average (random data)
• N * (N – 1) / 2 (worst case)

R i b t N2 / 4 tiRequires about N2 / 4 operations
Requires nearly linear time on nearly sorted data

Bubble Sort

Exchanges
• N * (N – 1) / 2

Comparisons
• N * (N 1) / 2• N * (N – 1) / 2

Average case and worst case veryAverage case and worst case very
similar, even for adaptive method

Empirical Comparison
Sorting Strategy

N Selection Insertion Insertion
(d ti) Bubble ShakerN Selection Insertion (adaptive) Bubble Shaker

1000 5 7 4 11 8

2000 21 29 15 45 34

4000 85 119 62 182 138

(Running times in seconds)

Reading

Sedgewick, Chapter 6

