
Shell SortShell Sort

Biostatistics 615/815
Lecture 6Lecture 6

Housekeeping Note:Housekeeping Note:
Homework Grading

Weihua Guan is the GSI

He requests that you e-mail him source
code for your assignments to:code for your assignments to:

wguan@umich.eduwguan@umich.edu

Thanks!Thanks!

Last Lecture …

Properties of Sorting Algorithms
• Adaptive
• Stable

Elementary Sorting Algorithms
• Selection Sort
• Insertion Sort
• Bubble Sort

“Stable” and “Unstable” Sorts“Stable” and “Unstable” Sorts
City State Season
Las Vegas NV All Year

Stable Sort by
State

Unstable Sort by
Stateg

Denver CO All Year
Traverse City MI Summer
Holland MI Summer

State State

Holland MI Summer
Boulder CO Winter

City State Season
Denver CO All Year

City State Season
Boulder CO Winter

Boulder CO Winter
Traverse City MI Summer
Holland MI Summer

Denver CO All Year
Holland MI Summer
Traverse City MI Summer

Las Vegas NV All Year
y

Las Vegas NV All Year

Selection Insertion Bubble

Recap

Selection, Insertion, Bubble Sorts

Can you think of:
• One property that all of these share?One property that all of these share?
• One useful advantage for Selection sort?
• One useful advantage for Insertion sort?One useful advantage for Insertion sort?

Situations where these sorts can be used?Situations where these sorts can be used?

Today …

Shellsort
• An algorithm that beats the O(N2) barrier
• S i bl f f l• Suitable performance for general use

Very popularVery popular
• It is the basis of the default R sort() function

Tunable algorithm
• Can use different orderings for comparisonsCan use different orderings for comparisons

Shellsort
D ld L Sh ll (19 9)Donald L. Shell (1959)
• A High-Speed Sorting Procedure

Communications of the Association for Computing
M hi 2 30 32Machinery 2:30-32

• Systems Analyst working at GE
• Back then, most computers read punch-cards

Also called:
• Diminishing increment sortg
• “Comb” sort
• “Gap” sort

Intuition

Insertion sort is effective:
• For small datasets
• For data that is nearly sorted

Insertion sort is inefficient when:
• Elements must move far in array

The Idea …

Allow elements to move in large steps

Bring elements close to final location
• First, ensure array is nearly sorted …
• … then, run insertion sort

H ?How?
• Sort interleaved arrays first

Shellsort Recipe

Decreasing sequence of step sizes h
• Every sequence must end at 1
• 8 4 2 1• … , 8, 4, 2, 1

For each h sort sub-arrays that start at arbitraryFor each h, sort sub arrays that start at arbitrary
element and include every hth element
• if h = 4

• Sub-array with elements 1, 5, 9, 13 …
• Sub-array with elements 2, 6, 10, 14 …
• Sub-array with elements 3 7 11 15Sub array with elements 3, 7, 11, 15 …
• Sub-array with elements 4, 8, 12, 16 …

Shellsort Notes

Any decreasing sequence that ends at 1
will do…
• Th fi l i t d• The final pass ensures array is sorted

Diff t d ti llDifferent sequences can dramatically
increase (or decrease) performance

Code is similar to insertion sort

Sub-arrays when Increment is 5
5-sorting an array

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 51 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 51 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Elements in each subarray color coded

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

C Code: ShellsortC Code: Shellsort
void sort(Item a[], int sequence[], int start, int stop)

{
i t t iint step, i;

for (int step = 0; sequence[step] >= 1; step++)
{
int inc = sequence[step];

for (i = start + inc; i <= stop; i++)
{
int j = i;
Item val = a[i];Item val = a[i];

while ((j >= start + inc) && val < a[j - inc])
{
a[j] = a[j - inc];
j -= inc;
}

a[j] = val;
}}

}
}

Pictorial Representation

Array gradually gains order

Eventually, we approach the ideal
case where insertion sort is O(N)

C Code: Using a Shell Sort
#include “stdlib.h”#include stdlib.h
#include “stdio.h”

#define Item int

void sort(Item a[], int sequence[], int start, int stop);

int main(int argc, char * argv[])
{
printf(“This program uses shell sort to sort a random array\n\n”);
printf(“ Parameters: [array-size]\n\n”);

int size = 100;
if (argc > 1) size = atoi(argv[1]);

int sequence[] = { 364, 121, 40, 13, 4, 1, 0};
int * array = (int *) malloc(sizeof(int) * size);t a ay (t) a oc(s eo (t) s e);

srand(123456);
printf(“Generating %d random elements …\n”, size);
for (int i = 0; i < size; i++)

array[i] = rand();

printf(“Sorting elements …\n”, size);
sort(array, sequence, 0, size – 1);

printf(“The sorted array is …\n”);
for (int i = 0; i < size; i++)for (int i = 0; i < size; i++)

printf(“%d “, array[i]);
printf(“\n”);
free(array);
}

Note on Example Code:Note on Example Code:
Declaring Variables “Late”

Instead of declaring variables immediately
after opening a {} block, wait until first use
• Possibility introduced with C++

Supported by most modern C compilers
• In UNIX, use g++ instead of gcc to compile

Running Time (in seconds)
N Pow2 Knuth Merged Seq1 Seq2N Pow2 Knuth Merged Seq1 Seq2

125000 1 0 0 0 0
250000 2 0 0 1 0
500000 6 1 1 0 1500000 6 1 1 0 1

1000000 14 2 2 1 2
2000000 42 5 2 4 3
4000000 118 10 6 7 8

Pow2 – 1, 2, 4, 8, 16 … (2i)
Knuth – 1, 4, 13, 40, … (3 * previous + 1)

4000000 118 10 6 7 8

, , , , (p)
Seq1 – 1, 5, 41, 209, … (4i – 3 * 2i + 1)
Seq2 – 1, 19, 109, 505 … (9 * 4i – 9 * 2i + 1)
Merged – Alternate between Seq1 and Seq2

Not Sensitive to Input ...

Increment Sequences

Good:
• Consecutive numbers are relatively prime
• Increments decrease roughly exponentially

An example of a bad sequence:
• 1, 2, 4, 8, 16, 32 …1, 2, 4, 8, 16, 32 …
• What happens if the largest values are all in

odd positions?

Shellsort Properties

Not very well understood

For good increment sequences, requires
time proportional totime proportional to
• N (log N)2

• N1.25N

We will discuss them briefly …

Definition: h-Sorted Array

An array where taking every hth element y g y
(starting anywhere) yields a sorted array

Corresponds to a set of several* sorted
arrays interleaved togetherarrays interleaved together
• * There could be h such arrays

Property I

If we h-sort an array that is k-ordered…
Result is an h- and k- ordered array

h-sort preserves k-order!

Seems tricky to prove but considering a set ofSeems tricky to prove, but considering a set of
4 elements as they are sorted in parallel makes
things clear…

Property I

Result of h-sorting an array that is k-
ordered is an h- and k- ordered array

Consider 4 elements, in k-ordered array:
• a[i] <= a[i+k]
• a[i+h] <= a[i+k+h]

After h-sorting, a[i] contains minimum and
a[i+k+h] contains maximum of all 4

Property II
If h and k are relatively prime …

It th t th (h 1)(k 1) t t t bItems that are more than (h-1)(k-1) steps apart must be
in order
• Possible to step from one to the other using steps size h or k p g p
• That is, by stepping through elements known to be in order.

I ti t i (h 1)(k 1) iInsertion sort requires no more (h-1)(k-1) comparisons
per item to sort array that is h- and k-sorted
• Or (h-1)(k-1)/g comparisons to carry a g-sort()() g p y g

Property II

Consider h and k sorted arrays
• Say h = 4 and k = 5

Elements that must be in order

Property II

Consider h and k sorted arrays
• Say h = 4 and k = 5

More elements that must be in order …

Property II

Combining the previous series gives the
desired property that elements (h-1)(k-1)
elements away must be in orderelements away must be in order

An optimal series?
C id i h i iConsidering the two previous properties…

A series where every sub array is known toA series where every sub-array is known to
be 2- and 3- ordered could be sorted with a
single round of comparisons

Is it possible to construct series of
increments that ensures this?increments that ensures this?
• Before h-sorting, ensure 2h and 3h sort have been

done …

Optimal Performance?

Consider a triangle of increments:
• Each element is:

• d bl th b b t th i ht• double the number above to the right
• three times the number above to the left

• < log2N log3N increments
1

2 3
4 6 94 6 9

8 12 18 27
16 24 36 54 81

32 48 72 108 162 243

Optimal Performance?

Start from bottom to top, right to left

After first row, every sub-array is 3-sorted and
2-sorted
• N th 1 h !• No more than 1 exchange!

In total there are ~ log N log N / 2 incrementsIn total, there are log2N log3N / 2 increments
• About N (log N)2 performance possible

Today’s Summary: Shellsort

Breaks the N2 barrier
• Does not compare all pairs of elements, ever!

Average and worst-case performanceAverage and worst case performance
similar

Difficult to analyze precisely

Reading

Sedgewick, Chapter 6

