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Housekeeping Note:Housekeeping Note:
Homework Grading

Weihua Guan is the GSI 

He requests that you e-mail him source 
code for your assignments to:code for your assignments to:

wguan@umich.eduwguan@umich.edu

Thanks!Thanks!



Last Lecture …

Properties of Sorting Algorithms
• Adaptive
• Stable

Elementary Sorting Algorithms
• Selection Sort
• Insertion Sort
• Bubble Sort
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Selection      Insertion    Bubble



Recap

Selection, Insertion, Bubble Sorts

Can you think of:
• One property that all of these share?One property that all of these share?
• One useful advantage for Selection sort?
• One useful advantage for Insertion sort?One useful advantage for Insertion sort?

Situations where these sorts can be used?Situations where these sorts can be used?



Today …

Shellsort
• An algorithm that beats the O(N2) barrier
• S i bl f f l• Suitable performance for general use

Very popularVery popular
• It is the basis of the default R sort() function

Tunable algorithm
• Can use different orderings for comparisonsCan use different orderings for comparisons



Shellsort
D ld L Sh ll (19 9)Donald L. Shell (1959)
• A High-Speed Sorting Procedure

Communications of the Association for Computing 
M hi 2 30 32Machinery 2:30-32 

• Systems Analyst working at GE 
• Back then, most computers read punch-cards

Also called:
• Diminishing increment sortg
• “Comb” sort
• “Gap” sort



Intuition

Insertion sort is effective:
• For small datasets
• For data that is nearly sorted

Insertion sort is inefficient when:
• Elements must move far in array



The Idea …

Allow elements to move in large steps

Bring elements close to final location
• First, ensure array is nearly sorted … 
• … then, run insertion sort

H ?How?
• Sort interleaved arrays first



Shellsort Recipe

Decreasing sequence of step sizes h
• Every sequence must end at 1
• 8 4 2 1• … , 8, 4, 2, 1

For each h sort sub-arrays that start at arbitraryFor each h, sort sub arrays that start at arbitrary 
element and include every hth element 
• if h = 4 

• Sub-array with elements 1, 5, 9, 13 …
• Sub-array with elements 2, 6, 10, 14 …
• Sub-array with elements 3 7 11 15Sub array with elements 3, 7, 11, 15 …
• Sub-array with elements 4, 8, 12, 16 …



Shellsort Notes

Any decreasing sequence that ends at 1 
will do…
• Th fi l i t d• The final pass ensures array is sorted

Diff t d ti llDifferent sequences can dramatically 
increase (or decrease) performance

Code is similar to insertion sort



Sub-arrays when Increment is 5
5-sorting an array

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 51 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 51 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Elements in each subarray color coded

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5



C Code: ShellsortC Code: Shellsort
void sort(Item a[], int sequence[], int start, int stop)

{ 
i t t iint step, i;

for (int step = 0; sequence[step] >= 1; step++)
{ 
int inc = sequence[step];

for (i = start + inc; i <= stop; i++)
{
int j = i; 
Item val = a[i];Item val = a[i];

while ((j >= start + inc) && val < a[j - inc])
{
a[j] = a[j - inc];
j -= inc;
}

a[j] = val;
}}

}
}



Pictorial Representation

Array gradually gains order

Eventually, we approach the ideal 
case where insertion sort is O(N)



C Code: Using a Shell Sort
#include “stdlib.h”#include stdlib.h
#include “stdio.h”

#define Item int

void sort(Item a[], int sequence[], int start, int stop);

int main(int argc, char * argv[])
{
printf(“This program uses shell sort to sort a random array\n\n”);
printf(“  Parameters: [array-size]\n\n”);

int size = 100;
if (argc > 1) size = atoi(argv[1]);

int sequence[] = { 364, 121, 40, 13, 4,  1, 0};
int * array = (int *) malloc(sizeof(int) * size);t a ay ( t ) a oc(s eo ( t) s e);

srand(123456);
printf(“Generating %d random elements …\n”, size);
for (int i = 0; i < size; i++)

array[i] = rand();

printf(“Sorting elements …\n”, size);
sort(array, sequence, 0, size – 1);

printf(“The sorted array is …\n”);
for (int i = 0; i < size; i++)for (int i = 0; i < size; i++)

printf(“%d “, array[i]);
printf(“\n”);
free(array);
}



Note on Example Code:Note on Example Code:
Declaring Variables “Late”

Instead of declaring variables immediately 
after opening a {} block, wait until first use
• Possibility introduced with C++

Supported by most modern C compilers
• In UNIX, use g++ instead of gcc to compile



Running Time (in seconds)
N Pow2 Knuth Merged Seq1 Seq2N Pow2 Knuth Merged Seq1 Seq2

125000 1 0 0 0 0
250000 2 0 0 1 0
500000 6 1 1 0 1500000 6 1 1 0 1

1000000 14 2 2 1 2
2000000 42 5 2 4 3
4000000 118 10 6 7 8

Pow2 – 1, 2, 4, 8, 16 … (2i)
Knuth – 1, 4, 13, 40, … (3 * previous + 1)

4000000 118 10 6 7 8

, , , , ( p )
Seq1 – 1, 5, 41, 209, … (4i – 3 * 2i + 1)
Seq2 – 1, 19, 109, 505 … (9 * 4i  – 9 * 2i + 1)
Merged – Alternate between Seq1 and Seq2



Not Sensitive to Input ...



Increment Sequences

Good:
• Consecutive numbers are relatively prime
• Increments decrease roughly exponentially

An example of a bad sequence:
• 1, 2, 4, 8, 16, 32 …1, 2, 4, 8, 16, 32 …
• What happens if the largest values are all in 

odd positions?



Shellsort Properties

Not very well understood

For good increment sequences, requires 
time proportional totime proportional to
• N (log N)2

• N1.25N

We will discuss them briefly …



Definition: h-Sorted Array

An array where taking every hth element y g y
(starting anywhere) yields a sorted array

Corresponds to a set of several* sorted 
arrays interleaved togetherarrays interleaved together
• * There could be h such arrays



Property I

If we h-sort an array that is k-ordered…
Result is an h- and k- ordered array

h-sort preserves k-order!

Seems tricky to prove but considering a set ofSeems tricky to prove, but considering a set of 
4 elements as they are sorted in parallel makes 
things clear…



Property I

Result of h-sorting an array that is k-
ordered is an h- and k- ordered array

Consider 4 elements, in k-ordered array:
• a[i] <= a[i+k]
• a[i+h] <= a[i+k+h]

After h-sorting, a[i] contains minimum and 
a[i+k+h] contains maximum of all 4



Property II
If h and k are relatively prime …

It th t th (h 1)(k 1) t t t bItems that are more than (h-1)(k-1) steps apart must be 
in order
• Possible to step from one to the other using steps size h or k p g p
• That is, by stepping through elements known to be in order.

I ti t i (h 1)(k 1) iInsertion sort requires no more (h-1)(k-1) comparisons 
per item to sort array that is h- and k-sorted
• Or (h-1)(k-1)/g comparisons to carry a g-sort( )( ) g p y g



Property II

Consider h and k sorted arrays
• Say h = 4 and k = 5

Elements that must be in order



Property II

Consider h and k sorted arrays
• Say h = 4 and k = 5

More elements that must be in order …



Property II

Combining the previous series gives the 
desired property that elements (h-1)(k-1) 
elements away must be in orderelements away must be in order



An optimal series?
C id i h i iConsidering the two previous properties…

A series where every sub array is known toA series where every sub-array is known to 
be 2- and 3- ordered could be sorted with a 
single round of comparisons

Is it possible to construct series of 
increments that ensures this?increments that ensures this?
• Before h-sorting, ensure 2h and 3h sort have been 

done …



Optimal Performance?

Consider a triangle of increments:
• Each element is:

• d bl th b b t th i ht• double the number above to the right
• three times the number above to the left

• < log2N log3N increments
1

2 3
4 6 94 6 9

8 12 18 27
16 24 36 54 81

32 48 72 108 162 243



Optimal Performance?

Start from bottom to top, right to left

After first row, every sub-array is 3-sorted and 
2-sorted
• N th 1 h !• No more than 1 exchange!

In total there are ~ log N log N / 2 incrementsIn total, there are  log2N log3N / 2 increments
• About N (log N)2 performance possible



Today’s Summary: Shellsort

Breaks the N2 barrier
• Does not compare all pairs of elements, ever!

Average and worst-case performanceAverage and worst case performance 
similar

Difficult to analyze precisely



Reading

Sedgewick, Chapter 6


