
Quick SortQuick Sort

Biostatistics 615/815
Lecture 7Lecture 7

Last Lecture: Shell Sort

Gradually bring order to array by:
• Sorting sub-arrays including every kth element
• U i i f t i k di ith k 1• Using a series of step sizes k, ending with k = 1

Each pass handles nearly sorted arrays whereEach pass handles nearly sorted arrays where
insertion sort is efficient

Theoretically, N (log N)2 complexity is possible

Pictorial Representation

Array gradually gains order

Eventually, we approach the ideal
case where insertion sort is O(N)

Today: Quick Sort

Most widely used sorting algorithm
• Possibly excluding those bubble sorts that

should be banished!

Extremely efficient
• O(N log N)

Divide-and-conquer algorithm

The Inventor of Quicksort

Sir Charles A. R. Hoare
• 1980 ACM Turing Award

British computer scientist
• Studied statistics as a graduate student

M d j t ib ti t d l iMade major contributions to developing
computer languages

C. A. R. Hoare Quote

“I conclude that there are two ways of
constructing a software design:

One way is to make it so simple that
there are obviously no deficiencies and

the other way is to make it so
complicated that there are no obvious

deficiencies."

Caution!

Quicksort is fragile!g
• Small mistakes can be hard to spot
• Shellsort is more robust (but slower)()

The worst case running time is O(N2)e o st case u g t e s O()
• Can be avoided in nearly all practical settings

Divide-And-Conquer

Divide a problem into smaller sub-
problems

Find a partitioning element such that:
• All elements to the right are greater
• All elements to the left are smaller

• Sort right and left sub-arrays independently

C Code: QuickSort
void quicksort(Item a[], int start, int stop)

{
int i;;

if (stop <= start) return;

i = partition(a, start, stop);
quicksort(a, start, i - 1);
quicksort(a, i + 1, stop);
}

Quicksort Notes

Each round places one element into position
• The partitioning element

Recursive calls handle each half of array

What would be:
• a good partitioning element?a good partitioning element?
• a bad partitioning element?

Partitioning

Choose an arbitrary element
• Any suggestions?

Place all smaller values to the left

Place all larger values to the rightPlace all larger values to the right

Partitioning

smaller
elements

larger
elements

partitioning
element

up down

C Code: Partitioning
int partition(Item a[], int start, int stop)

{
int up = start, down = stop – 1, part = a[stop];

if (stop <= start) return start;

while (true)
{{
while (isLess(a[up], part))

up++;
while (isLess(part, a[down]) && (up < down))

ddown--;

if (up >= down) break;
Exchange(a[up], a[down]);

++ dup++; down--;
}

Exchange(a[up], a[stop]);
returnreturn up;
}

Partitioning Notes

The check (up < down) required when
partitioning element is also smallest
element.

N comparisons
• N - 1 for each element vs. partitioning elementN 1 for each element vs. partitioning element
• One extra is possible when pointers cross

Quick Sort

Array is successively subdividedArray is successively subdivided,
around partitioning element.

Within each section,
items are arranged randomly

Complexity of Quick Sort

Best case:

NNNCC log2 =+=

Random input:

NNNCC NN 22/ log2 =+=

Random input:

{ }CCNC
N

kNkN 1
1

++= ∑{ }

NNNN

CC
N

NC

e

k
kNkN

2

1
1

log4.1log2 ≈≈

++ ∑
=

−−

e 2gg

Complexity of Quick Sort

75

90

so
ns

ou
sa

nd
s

45

60

of
 C

om
pa

ri
Th

o

Average Case

Best Case

15

30

N
um

be
r

o

0
0 1 2 3 4 5

Thousands

Number of Elements

Improvements to Quicksort

Sorting small sub-arrays
• Quicksort is great for large arrays
• Inefficient for very small ones

Choosing a better partitioning element
• A poor choice could make sort quadratic!A poor choice could make sort quadratic!

Small Sub-arrays

Most recursive calls are for small sub-
arrays
• Commonplace for many recursive programs

“Brute-force” algorithms are often better
for small problemsp
• In this case, insertion sort is a good option

Sorting Small Sub-arrays
Possibility 1:
• if (stop – start <= M)

{
insertion_sort(a, start, stop);
return;
}}

Possibility 2:
• if (stop start <= M) return;• if (stop – start <= M) return;
• Make a single call to insertion_sort() at the end

5 < M < 25 gives ~10% speed increase

Sedgewick’s Timings

N Basic Insertion
Insertion

After
Ignore

Duplicates System

12,500 8 7 6 7 10

25 000 16 14 13 17 2025,000 16 14 13 17 20

50,000 37 31 31 41 45

100,000 91 78 76 113 103

Arrays including first N words in text of “Moby Dick”.

Improved Partitioning

How do we avoid picking smallest or
largest element for partitioning?

• Could take a random element…

• Could take a sample …

Median-of-Three Partitioning

Take sample of three elements

Usually, first, last and middle element
• Sort these three elementsSort these three elements

Partition around medianPartition around median
• Very unlikely that worst case would occur

C Code:
Median of Three PartitioningMedian-of-Three Partitioning

void quicksort(Item a[], int start, int stop)
{
int iint i;

// Leave small subsets for insertion sort
if (stop - start <= M) return;

// Place median of 3 in position stop - 1
Exchange(a[(start + stop)/2], a[stop – 1]);
CompExch(a[start], a[stop – 1]);
CompExch(a[start] a[stop]);CompExch(a[start], a[stop]);
CompExch(a[stop - 1], a[stop]);

// The first and the last elements are “prepartioned”
i = partition(a start + 1 stop 1);i = partition(a, start + 1, stop - 1);
quicksort(a, start, i - 1);
quicksort(a, i + 1, stop);
}

So far…
Basic Quick Sort

M di f Th P titi iMedian of Three Partitioning

Brute Force Sorts for Small ProblemsBrute Force Sorts for Small Problems

Combined median-of-three partitioning andCombined, median of three partitioning and
insertion sorts for smaller sub-arrays improve
performance about 20%

Another Problem …

The computer stack has a limited size

Quick Sort can call itself up to N-1 times
• Although unusual deep recursion is possible!Although unusual, deep recursion is possible!

Can we provide a guarantee on depth ofCan we provide a guarantee on depth of
recursion?

The Solution

Keep track of sections to be solved in p
“explicit” stack

After partitioning, handle smaller half first
• At most log N smaller halves!At most, log2 N smaller halves!

Non-Recursive QuickSortNon Recursive QuickSort
void quicksort(Item a[], int start, int stop)

{
int i, s = 0, stack[64];int i, s 0, stack[64];

stack[s++] = start;
stack[s++] = stop;

hil (> 0)while (s > 0)
{
stop = stack[--s];
start = stack[--s];
if (start >= stop) continue;(p)

i = partition(a, start, stop);
if (i – start > stop – i)

{
stack[s++] = start; stack[s++] = i 1;stack[s++] = start; stack[s++] = i - 1;
stack[s++] = i + 1; stack[s++] = stop;
}

else {
stack[s++] = i + 1; stack[s++] = stop;
stack[s++] = start; stack[s++] = i - 1;
}

}
}

Explicit Stacks

A common feature in computer programs
• Similar to a “TO DO” list or an “INBOX”

A simple way to avoid recursionA simple way to avoid recursion
• More effort for the programmer

Another application is in graph traversal

Quick Sort Summary

Divide and Conquer Algorithm
• Recursive calls can be “hidden”

Optimizationsp
• Choice of median
• Threshold for brute-force methods
• Limiting depth of recursion

A Related Problem

Consider the problem of finding the kth

smallest element in an array

Useful when searching for the median,Useful when searching for the median,
quartiles, deciles or percentiles

Selection – small k
We can solve the problem in O(Nk) = O(N)

One approach:
• Perform k passes
• I j fi d j ll t l t• In pass j, find j smallest element

Another approach:Another approach:
• Maintain a small array with k smallest elements

Selection – for large k
One option is to sort
array…

But we only need to
bring k into positionbring k into position

F id fFocus on one side of
current partition

C Code: Selection
// th th// Places kth smallest element in the kth position
// within array. Could move other elements.
void select(Item a[], int start, int stop, int k)

{{
int i;

if (stop <= start) return;if (stop <= start) return;

i = partition(a, start, stop);

if (i > k) select(a, start, i – 1, k);
if (i < k) select(a, i + 1, stop, k);
}

C Code: Without Recursion
// th th// Places kth smallest element in the kth position
// within array. Could move other elements.
void select(Item a[], int start, int stop, int k)

{{
int i;

while (start < stop)while (start < stop)
{
i = partition(a, start, stop);

if (i >= k) stop = i - 1;
if (i <= k) start = i + 1;
}

}

Selection

Quicksort based method is O(N)
• Rough argument:

• Fi t th h N l t• First pass through N elements
• Second pass through N/2 elements
• Third pass through N/4 elements
• …

Common application: finding k smallest valuesCommon application: finding k smallest values
in a simulation to save for further analyses

Recommended Reading

Sedgewick, Chapter 7

The original description by Hoare (1962)
in Computer Journal 5:10-15.in Computer Journal 5:10 15.

