
Merge SortMerge Sort

Biostatistics 615/815
Lecture 8Lecture 8

Notes on Problem Set 2

Union Find algorithms
Dynamic Programming

Results were very positive!y p

You should be gradually becoming g y g
comfortable compiling, debugging and
executing C code

Question 1

How many random pairs of connections
are required to connect 1,000 objects?
• Answer: ~3,740

Useful notes:
• Number of non-redundant links to controls loop
• Repeat simulation to get a better estimates

Question 2

Path lengths in the saturated tree…
• ~1.8 nodes on average
• 5 d f i th• ~5 nodes for maximum path

Random data is far from worst caseRandom data is far from worst case
• Worst case would be paths of log2 N (10) nodes

Path lengths can be calculated using weights[]

Question 3

Using top-down dynamic programming,
evaluate the beta-binomial distribution
• Like other recursive functions, this one can be

very costly to evaluate for non-trivial cases

Did you contrast results with non-
dynamic programming solution?

Last Lecture: Quick Sort

Choose a partitioning element …

Organize array such that:
• All elements to the right are greaterAll elements to the right are greater
• All elements to the left are smaller

Sort right and left sub-arrays independently

Quick Sort Summary

Divide and Conquer Algorithm
• Recursive calls can be “hidden”

Optimizations
• Choice of medianChoice of median
• Threshold for brute-force methods
• Limiting depth of recursion

Do you think quick sort is a stable sort?

C Code: QuickSort
void quicksort(Item a[], int start, int stop)

{
int i;;

if (stop <= start) return;

i = partition(a, start, stop);
quicksort(a, start, i - 1);
quicksort(a, i + 1, stop);
}

C Code: Partitioning
int partition(Item a[], int start, int stop)

{
int up = start, down = stop – 1, part = a[stop];

if (stop <= start) return start;

while (true)
{{
while (isLess(a[up], part))

up++;
while (isLess(part, a[down]) && (up < down))

ddown--;

if (up >= down) break;
Exchange(a[up], a[down]);

++ dup++; down--;
}

Exchange(a[up], a[stop]);
returnreturn up;
}

Non-Recursive Quick SortNon Recursive Quick Sort
void quicksort(Item a[], int start, int stop)

{
int i, s = 0, stack[64];int i, s 0, stack[64];

stack[s++] = start;
stack[s++] = stop;

hil (> 0)while (s > 0)
{
stop = stack[--s];
start = stack[--s];
if (start >= stop) continue;(p)

i = partition(a, start, stop);
if (i – start > stop – i)

{
stack[s++] = start; stack[s++] = i 1;stack[s++] = start; stack[s++] = i - 1;
stack[s++] = i + 1; stack[s++] = stop;
}

else {
stack[s++] = i + 1; stack[s++] = stop;
stack[s++] = start; stack[s++] = i - 1;
}

}
}

Selection

Problem of finding the kth smallest value in an
array

Simple solution would involve sorting the array
• Ti ti l t N l N ith Q i k S t• Time proportional to N log N with Quick Sort

Possible to improve by taking into account thatPossible to improve by taking into account that
only one element must fall into place
• Time proportional to N

C Code: Selection
// th th// Places kth smallest element in the kth position
// within array. Could move other elements.
void select(Item * a, int start, int stop, int k)

{{
int i;

if (start <= stop) return;if (start <= stop) return;

i = partition(a, start, stop);

if (i > k) select(a, start, i - 1);
if (i < k) select(a, i + 1, stop);
}

Merge Sort

Divide-And-Conquer Algorithm
• Divides a file in two halves
• Merges sorted halves

The “opposite” of quick sort

Requires additional storage

C Code: Merge Sort
void mergesort(Item a[], int start, int stop)

{
int m = (start + stop)/2;(p)/ ;

if (stop <= start) return;

mergesort(a, start, m);
mergesort(a, m + 1, stop);
merge(a, start, m, stop);
}

Merge Pattern N = 21

Merging Sorted Arrays

Consider two arrays

Assume they are both in order

Can you think of a merging strategy?

Merging Two Sorted Arrays
void merge_arrays(Item merged[], Item a[], int N, Item b[], int M)

{
int i = 0, j = 0, k;

for (k = 0; k < M + N; k++)
{
if (i == N)

{ merged[k] = b[j++]; continue; }

if (j == M)
{ merged[k] = a[i++]; continue; }

if (i (b[j] [i]))if (isLess(b[j], a[i]))
{ merged[k] = b[j++]; }

else
{ merged[k] = a[i++]; }

}}
}

“In-Place” Merge
For sorting, we would like to:
• Starting with sorted halves
•a[start … m]a[start … m]
•a[m + 1 … end]

• Generate a sorted stretchGenerate a sorted stretch
•a[start … end]

We would like an in-place merge, but…
• A true “in-place” merge is quite complicated

Abstract In-Place Merge

For caller, performs like in-place merge, p p g

Creates copies two sub-arraysCreates copies two sub-arrays
Replaces contents with merged results

C Code: Abstract In-place Merge
(First Attempt)(First Attempt)

void merge(Item a[], int start, int m, int stop)
{
static Item extra1[MAX_N];
static Item extra2[MAX_N];

for (int i = start; i <= m; i++)
extra1[i - start] = a[i];

for (int i = m + 1; i <= stop; i++)
extra2[i – m - 1] = a[i];

merge_arrays(a + start, extra1, m – start + 1,
extra2, stop – m);

}

C Code: Abstract In-place Merge
(Second Attempt)(Second Attempt)

void merge(Item a[], int start, int m, int stop)
{
static Item extra[MAX_N];

for (int i = start; i <= stop; i++)for (int i = start; i <= stop; i++)
extra[i] = a[i];

for (int i = start, k = start, j = m + 1; k <= stop; k++)for (int i start, k start, j m + 1; k < stop; k++)
if (j<=stop && isLess(extra[j], extra[i]) || i>m)

a[k] = extra[j++];
else

a[k] = extra[i++];
}

Avoiding End-of-Input Check

a[min] … a[max] b[max] … b[min]

First Array Second Array

a[min] … a[max] b[max] … b[min]

i j

At each point, compare elements i and j.

Then select the smallest element.

Move i or j towards the middle, as appropriate.

C Code: Abstract In-place Merge
(Third Attempt!)(Third Attempt!)

void merge(Item a[], int start, int m, int stop)
{
int i, j, k;

for (int i = start; i <= m; i++)
extra[i] = a[i];extra[i] = a[i];

for (int j = m + 1; j <= stop; j++)
extra[m + 1 + stop – j] = a[j];

for (int i = start, k = start, j = stop; k <= stop; k++)
if (isLess(extra[j], extra[i]))

a[k] = extra[j--];a[k] extra[j];
else

a[k] = extra[i++];
}

Merge Sort in Action

Merge Sort Notes

Order N log N
• Number of comparisons independent of data
• Exactly log N rounds
• Each requires N comparisons

Merge sort is stable
Insertion sort for small arrays is helpful

Sedgewick’s Timings (secs)

N QuickSort MergeSort MergeSort*

100,000 24 53 43

200 000 52 111 92200,000 52 111 92

400,000 109 237 198,

800,000 241 524 426

Array of floating point numbers; * using insertion for small arrays

Non-Recursive Merge Sort

First sort all sub-arrays of 1 element

Perform successive merges
• Merge results into sub-arrays of 2 elementsg y
• Merge results into sub-arrays of 4 elements
• …

Bottom-Up Merge SortBottom-Up Merge Sort
Item min(Item a, Item b)
{ return isLess(a,b) ? a : b; }

void mergesort(Item a[], int start, int stop)
{
int i, m;int i, m;

for (m = 1; m < stop – start; m += m)
for (i = start; i < stop - m; i += m + m)
{{
int from = i;
int mid = i + m – 1;
int to = min(i + m + m – 1, stop);(, p)

merge(a, from, mid, to);
}

}}

Merging Pattern for N = 21

Sedgewick’s Timings (secs)

N QuickSort
Top-Down
MergeSort

Bottom-Up
MergeSort

100,000 24 53 59

200,000 52 111 127

400 000 109 237 267400,000 109 237 267

800,000 241 524 568,

Array of floating point numbers

Automatic Memory Allocation

Defining large static arrays is not efficient
• Often, program will run on smaller datasets and the

arrays will just waste memoryarrays will just waste memory

A better way is to allocate and free memory asA better way is to allocate and free memory as
needed

Create a “wrapper” function that takes care of
memory allocation and freeing

Merge SortMerge Sort,
With Automatic Memory Allocation
Item * extra;

void sort(Item a[], int start, int stop)
{
//// Nothing to do with less than one element
if (stop <= start) return;

// Allocate the required extra storage
(i f() * ())extra = malloc(sizeof(Item) * (stop – start + 1));

// Merge and sort the data
mergesort(a, start, stop);

// Free memory once we are done with it
free(extra);
}

Today …
C i h di id dContrasting approaches to divide and conquer
• Quick Sort
• Merge SortMerge Sort

Abstraction in functions
• Some functions look simple for caller …
• … but are more complex “under-the-hood”

Unraveled Recursive Sorts

Sorting Summary

Simple O(N2) sorts for very small datasets
• Insertion, Selection and Bubblesort

Improved, but more complex sort
• Shell sortShell sort

Very efficient N log N sortsy g
• Quick Sort (requires no additional storage)
• Merge Sort (requires a bit of additional memory)

Sorting Indexes
Generating an index is an alternative to sorting the raw
data

Allows us to keep track of many different orders

Can be faster when items are largeCan be faster when items are large

How it works:
• L th t i i th d t h d• Leaves the array containing the data unchanged
• Generates an array where position i records position of the

ith smallest item in the original data

Example:Example:
Indexing with Insertion Sort
void makeIndex(int index[], Item a[], int start, int stop)
{
for (int i = start; i <= stop; i++)

index[i] = i;de [] ;

for (int i = start + 1; i <= stop; i++)
for (int j = i; j > start; j--)

if (i L ([i d [j]] [i d [j 1]]))if (isLess(a[index[j]], a[index[j-1]]))
Exchange(index[j-1], index[j])

else
break;

}

Next Lecture: Next Lecture:
An Alternative to Sorting

We’ll see how to organize data so that it
can be searched …

And so the complexity of searching and
i i th d t i l th N l Norganizing the data is less than N log N

Cost: Doing this will require additional
memory

Recommended Reading

For QuickSort
• Sedgewick, Chapter 7
• Hoare (1962) Computer Journal 5:10-15.

For MergeSort
• Sedgewick, Chapter 8

