Notes on Problem Set 2

- Union Find algorithms
- Dynamic Programming

- Results were very positive!

- You should be gradually becoming comfortable compiling, debugging and executing C code
Question 1

- How many random pairs of connections are required to connect 1,000 objects?
 - Answer: ~3,740

- Useful notes:
 - Number of non-redundant links to controls loop
 - Repeat simulation to get a better estimates
Question 2

- Path lengths in the saturated tree...
 - ~1.8 nodes on average
 - ~5 nodes for maximum path

- Random data is far from worst case
 - Worst case would be paths of $\log_2 N$ (10) nodes

- Path lengths can be calculated using weights[]
Question 3

- Using top-down dynamic programming, evaluate the beta-binomial distribution
 - Like other recursive functions, this one can be very costly to evaluate for non-trivial cases

- Did you contrast results with non-dynamic programming solution?
Last Lecture: Quick Sort

- Choose a partitioning element …

- Organize array such that:
 - All elements to the right are greater
 - All elements to the left are smaller

- Sort right and left sub-arrays independently
Quick Sort Summary

- Divide and Conquer Algorithm
 - Recursive calls can be “hidden”

- Optimizations
 - Choice of median
 - Threshold for brute-force methods
 - Limiting depth of recursion

- Do you think quick sort is a stable sort?
C Code: Quicksort

```c
void quicksort(Item a[], int start, int stop)
{
    int i;

    if (stop <= start) return;

    i = partition(a, start, stop);
    quicksort(a, start, i - 1);
    quicksort(a, i + 1, stop);
}
```
int partition(Item a[], int start, int stop)
{
 int up = start, down = stop - 1, part = a[stop];

 if (stop <= start) return start;

 while (true)
 {
 while (isLess(a[up], part))
 up++;
 while (isLess(part, a[down]) && (up < down))
 down--;

 if (up >= down) break;
 Exchange(a[up], a[down]);
 up++; down--;
 }

 Exchange(a[up], a[stop]);
 return up;
}
Non-Recursive Quick Sort

```c
void quicksort(Item a[], int start, int stop)
{
    int i, s = 0, stack[64];

    stack[s++] = start;
    stack[s++] = stop;

    while (s > 0)
    {
        stop = stack[--s];
        start = stack[--s];
        if (start >= stop) continue;

        i = partition(a, start, stop);
        if (i - start > stop - i)
        {
            stack[s++] = start; stack[s++] = i - 1;
            stack[s++] = i + 1; stack[s++] = stop;
        }
        else
        {
            stack[s++] = i + 1; stack[s++] = stop;
            stack[s++] = start; stack[s++] = i - 1;
        }
    }
}
```
Selection

- Problem of finding the k^{th} smallest value in an array

- Simple solution would involve sorting the array
 - Time proportional to $N \log N$ with Quick Sort

- Possible to improve by taking into account that only one element must fall into place
 - Time proportional to N
C Code: Selection

// Places kth smallest element in the kth position within array. Could move other elements.
void select(Item * a, int start, int stop, int k)
{
 int i;

 if (start <= stop) return;

 i = partition(a, start, stop);

 if (i > k) select(a, start, i - 1);
 if (i < k) select(a, i + 1, stop);
}
Merge Sort

- Divide-And-Conquer Algorithm
 - Divides a file in two halves
 - Merges sorted halves

- The “opposite” of quick sort

- Requires additional storage
C Code: Merge Sort

```c
void mergesort(Item a[], int start, int stop)
{
    int m = (start + stop)/2;

    if (stop <= start) return;

    mergesort(a, start, m);
    mergesort(a, m + 1, stop);
    merge(a, start, m, stop);
}
```
Merge Pattern N = 21
Merging Sorted Arrays

- Consider two arrays
- Assume they are both in order
- Can you think of a merging strategy?
Merging Two Sorted Arrays

```c
void merge_arrays(Item merged[], Item a[], int N, Item b[], int M)
{
    int i = 0, j = 0, k;

    for (k = 0; k < M + N; k++)
    {
        if (i == N)
        {
            merged[k] = b[j++]; continue;
        }

        if (j == M)
        {
            merged[k] = a[i++]; continue;
        }

        if (isLess(b[j], a[i]))
        {
            merged[k] = b[j++];
        }
        else
        {
            merged[k] = a[i++];
        }
    }
}
```
“In-Place” Merge

For sorting, we would like to:

- Starting with sorted halves
 - a[start ... m]
 - a[m + 1 ... end]
- Generate a sorted stretch
 - a[start ... end]

We would like an in-place merge, but…

- A true “in-place” merge is quite complicated
Abstract In-Place Merge

- For caller, performs like in-place merge
- Creates copies two sub-arrays
- Replaces contents with merged results
void merge(Item a[], int start, int m, int stop)
{
 static Item extra1[MAX_N];
 static Item extra2[MAX_N];

 for (int i = start; i <= m; i++)
 extra1[i - start] = a[i];

 for (int i = m + 1; i <= stop; i++)
 extra2[i - m - 1] = a[i - 1];

 merge_arrays(a + start, extra1, m - start + 1,
 extra2, stop - m);
}
void merge(Item a[], int start, int m, int stop)
{
 static Item extra[MAX_N];

 for (int i = start; i <= stop; i++)
 extra[i] = a[i];

 for (int i = start, k = start, j = m + 1; k <= stop; k++)
 if (j <= stop && isLess(extra[j], extra[i]) || i > m)
 a[k] = extra[j++];
 else
 a[k] = extra[i++];
}
Avoiding End-of-Input Check

At each point, compare elements i and j.

Then select the smallest element.

Move i or j towards the middle, as appropriate.
C Code: Abstract In-place Merge (Third Attempt!)

```c
void merge(Item a[], int start, int m, int stop)
{
    int i, j, k;

    for (int i = start; i <= m; i++)
        extra[i] = a[i];

    for (int j = m + 1; j <= stop; j++)
        extra[m + 1 + stop - j] = a[j];

    for (int i = start, k = start, j = stop; k <= stop; k++)
        if (isLess(extra[j], extra[i]))
            a[k] = extra[j--];
        else
            a[k] = extra[i++];
}
```
Merge Sort in Action
Merge Sort Notes

- Order $N \log N$
 - Number of comparisons independent of data
 - Exactly $\log N$ rounds
 - Each requires N comparisons

- Merge sort is stable
- Insertion sort for small arrays is helpful
Sedgewick’s Timings (secs)

<table>
<thead>
<tr>
<th>N</th>
<th>QuickSort</th>
<th>MergeSort</th>
<th>MergeSort*</th>
</tr>
</thead>
<tbody>
<tr>
<td>100,000</td>
<td>24</td>
<td>53</td>
<td>43</td>
</tr>
<tr>
<td>200,000</td>
<td>52</td>
<td>111</td>
<td>92</td>
</tr>
<tr>
<td>400,000</td>
<td>109</td>
<td>237</td>
<td>198</td>
</tr>
<tr>
<td>800,000</td>
<td>241</td>
<td>524</td>
<td>426</td>
</tr>
</tbody>
</table>

Array of floating point numbers; * using insertion for small arrays
Non-Recursive Merge Sort

- First sort all sub-arrays of 1 element
- Perform successive merges
 - Merge results into sub-arrays of 2 elements
 - Merge results into sub-arrays of 4 elements
 - …
Bottom-Up Merge Sort

Item min(Item a, Item b)
{ return isLess(a,b) ? a : b; }

void mergesort(Item a[], int start, int stop)
{
 int i, m;

 for (m = 1; m < stop - start; m += m)
 for (i = start; i < stop - m; i += m + m)
 {
 int from = i;
 int mid = i + m - 1;
 int to = min(i + m + m - 1, stop);

 merge(a, from, mid, to);
 }
}
Merging Pattern for $N = 21$
Sedgewick’s Timings (secs)

<table>
<thead>
<tr>
<th>N</th>
<th>QuickSort</th>
<th>Top-Down MergeSort</th>
<th>Bottom-Up MergeSort</th>
</tr>
</thead>
<tbody>
<tr>
<td>100,000</td>
<td>24</td>
<td>53</td>
<td>59</td>
</tr>
<tr>
<td>200,000</td>
<td>52</td>
<td>111</td>
<td>127</td>
</tr>
<tr>
<td>400,000</td>
<td>109</td>
<td>237</td>
<td>267</td>
</tr>
<tr>
<td>800,000</td>
<td>241</td>
<td>524</td>
<td>568</td>
</tr>
</tbody>
</table>

Array of floating point numbers
Automatic Memory Allocation

- Defining large static arrays is not efficient
 - Often, program will run on smaller datasets and the arrays will just waste memory

- A better way is to allocate and free memory as needed

- Create a “wrapper” function that takes care of memory allocation and freeing
Item * extra;

void sort(Item a[], int start, int stop)
{
 // Nothing to do with less than one element
 if (stop <= start) return;

 // Allocate the required extra storage
 extra = malloc(sizeof(Item) * (stop - start + 1));

 // Merge and sort the data
 mergesort(a, start, stop);

 // Free memory once we are done with it
 free(extra);
}
Today ...

- Contrasting approaches to divide and conquer
 - Quick Sort
 - Merge Sort

- Abstraction in functions
 - Some functions look simple for caller ...
 - … but are more complex “under-the-hood”

- Unraveled Recursive Sorts
Sorting Summary

- Simple $O(N^2)$ sorts for very small datasets
 - Insertion, Selection and Bubblesort

- Improved, but more complex sort
 - Shell sort

- Very efficient $N \log N$ sorts
 - Quick Sort (requires no additional storage)
 - Merge Sort (requires a bit of additional memory)
Sorting Indexes

- Generating an index is an alternative to sorting the raw data
- Allows us to keep track of many different orders
- Can be faster when items are large

How it works:
- Leaves the array containing the data unchanged
- Generates an array where position \(i \) records position of the \(i^{th} \) smallest item in the original data
Example:
Indexing with Insertion Sort

```c
void makeIndex(int index[], Item a[], int start, int stop) {
    for (int i = start; i <= stop; i++)
        index[i] = i;

    for (int i = start + 1; i <= stop; i++)
        for (int j = i; j > start; j--)
            if (isLess(a[index[j]], a[index[j-1]]))
                Exchange(index[j-1], index[j])
            else
                break;
}
```
We’ll see how to organize data so that it can be searched …

And so the complexity of searching and organizing the data is less than $N \log N$

Cost: Doing this will require additional memory
Recommended Reading

- For QuickSort
 - Sedgewick, Chapter 7

- For MergeSort
 - Sedgewick, Chapter 8