
Hashingg
(continued…)

Biostatistics 615/815
Lecture 12Lecture 12

Homework 5, Question 1:Homework 5, Question 1:
Quick Sort Optimization …

12 200 s

10 167

Th
ou

sa
nd

s

10

Ti
m

e
(m

s)

167

om
pa

ris
on

s

8 133 C

6
0 10 20 30 40 50 60

M

100

Homework 5, Question 1:Homework 5, Question 1:
Merge-Sort Optimization

14 20014

175

200

Th
ou

sa
nd

s

12

Ti
m

e
(m

s)

150

m
pa

ris
on

s

10

T

125

C
om

8
0 10 20 30 40 50 60

M

100

Last Lecture

Introduction to hash tables
• Desirable properties of hash functions
• U i h i f i t t l lli i• Using a chain of pointers to resolve collisions

Fast way to organize data that does not rely onFast way to organize data that does not rely on
sorting

Trades savings in computing time for additional
memory use

Today

More detailed consideration of hash
tables

Alternative conflict resolution strategies
• Linear Probing
• Double Hashing

Managing the size of hash tables

Conflict Resolution 2:Conflict Resolution 2:
Linear Probing

If we can guarantee that M > Ng
• In this case, α < 1

Whenever there is a collision, search
sequentially for the next empty slotsequentially for the next empty slot

Linear Probing
Linear probing effectively generates a series of locations to
try for each item

For example, we might specify that
• For value A, try position 7, then 8, 9, 10 …
• For value S, try position 3, then 4, 5, 6 …, y p , , ,
• For value E, try position 9, then 10, 11, 12 …

If there are not many collisions (ie the table is not very full)If there are not many collisions (ie. the table is not very full)
• Most items will be placed in the first location we try
• Most items will be retrieved quickly

Linear Probing Example
ItemItem
Hash1

Table after inserting element 1
Table after inserting element 2Table after inserting element 2
.
.
.
.
.
.
.
.
.
.
.
Table after inserting all elements

Table index

Linear Probing: C fragments
/ //* Creating a hash table */
Item table[M];
for (i = 0; i < M; i++)

table[M] = EMPTY;tab e[] ;

/* Inserting or searching for an item */
h = hash(item, M);
hil (t bl [h] ! it && t bl [h] ! EMPTY)while (table[h] != item && table[h] != EMPTY)
h = (h + 1) % M;

/* Search successful if table[h] != EMPTY */
/* Otherwise, item could be inserted at table[h] */
if (table[h] == EMPTY)

table[h] = item;

Cost Depends on Clustering…

Consider two tables that are half full

• In one, items occupy all the odd positions
• In another, items occupy first M/2 positions

Where do you expect searches to take
longer?

Number of Comparisons

load factor (α) 1/2 2/3 3/4 9/10

S h Hit 1 5 2 0 3 0 5 5Search Hit 1.5 2.0 3.0 5.5

Search Miss 2.5 5.0 8.5 50.5

⎟
⎞

⎜
⎛

⎟
⎞

⎜
⎛ 1111

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+=⎟
⎠
⎞

⎜
⎝
⎛

−
+= 2)1(

11
2
1)Miss(

1
11

2
1)Hit(

αα
CostCost

(These results from an analysis by Knuth, 1962, are actually quite tricky)

Notes on Linear Hashing

Deleting elements is cumbersome

Must rehash all other elements in cluster

Or replace with "DELETED" element
• C t d i t h i h• Counted as mismatch in searches
• Counted as empty slot for insert

Conflict Resolution 2:Conflict Resolution 2:
Double Hashing

Similar to linear hashing

Guards against clustering by using a second
hash function to generate increment for
seq ential searchessequential searches

V i t t t t bl i i iVery important to ensure table size is prime, or
searches for empty slots could fail before table is
fullfull

Double Hashing Example
Item
Hash1
Hash2

Table after inserting element 1Table after inserting element 1
Table after inserting element 2
.
.
.
.
.
.
.
..
.
.
.
Table after inserting all elements

Table index

Double Hashing: C fragments
/* Searching for an item */
h = hash(item, M);
h2 = hash2(item, another prime) + 1;(, _p) ;
while (table[h] != item && table[h] != EMPTY)

h = (h + h2) % M;

/* Search successful if table[h] != EMPTY */
/* Otherwise, item could be inserted at table[h] */
if (table[h] == EMPTY)

table[h] = item;

Number of Comparisons

load factor (α) 1/2 2/3 3/4 9/10

S h Hit 1 4 1 6 1 8 2 6Search Hit 1.4 1.6 1.8 2.6

Search Miss 2.0 3.0 4.0 10

111
ααα −

=
−

=
1

1)Miss(
1

1ln1)Hit(CostCost

Analysis of Double Hashing

Performance similar to random hashing
• Unique sequence of keys for each item

Number of probes for a miss would be…

α
==⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛++

1
1

/1
1...1

32

MNM
N

M
N

M
N

α−−⎠⎝⎠⎝ 1/1 MNMMM

Analysis of Double Hashing

Number of probes for a hit
• The same as the cost of originally inserting the item
• With N it th t h i t t ith• With N items, assume that each one is target with

probability 1/N

⎞⎛ 1111

⎞⎛

=⎟
⎠
⎞

⎜
⎝
⎛ +

−
+

−
+

−
+ ...

/31
1

/21
1

/11
111

MMMN

⎟
⎠
⎞

⎜
⎝
⎛ +

−
+

−
+

−
+ ...

321
11

M
M

M
M

M
M

N

Further Notes on Hashing

To ensure that search requires less than
t comparisons on average
• α < (1 – 1/t) with double hashing
• α < (1 – 1/sqrt(t)) with linear hashing

Dynamic hashing
• Increase table size and rehash elements

whenever α exceeds a threshold (e.g. 50%)

Cost Comparison

Cost of Searches Cost of Searches
with

Double Hashing
with

Linear Probing

Quadratic Probing

An intermediate strategy between linear
probing and double hashing

After the ith collision, we check position
(h i i2) d M(h + c1 i + c2 i2) mod M

• c1 and c2 are constants
• c1 = c2 = 0.5 works well when M is prime

Dynamic Hashing

Hash tables must balance:
• Speed of inserting and retrieving elements
• Usage of computer memory

With dynamic hashing table is resized
when it starts getting “full”
• Avoid performance penalty for nearly full

tables

Dynamic Hashing: C Fragment
/ //* Creating a hash table */
Item * table;
int M = 2, N = 0;

table = malloc(sizeof(Item) * M);(());
for (i = 0; i < M; i++)

table[M] = EMPTY;

/* Inserting or searching for an item */
h h h(it M)h = hash(item, M);
while (table[h] != item && table[h] != EMPTY)

h = (h + 1) % M;

/* Inserted new items into table */
if (table[h] == EMPTY)

{
table[h] = item;
N++;
}}

Dynamic Hashing: C FragmentDynamic Hashing: C Fragment
/* Check if table is nearly full */
if (N >= M/2)

{{
/* Allocate a new table */
Item * newTable = malloc(sizeof(Item)) * M * 2;
for (int i = 0; i < M * 2; i++)

newTable[i] = EMPTY;

/* Rehash all elements into the larger table */
for (int i = 0; i < M; i++)

if (table[i] != EMPTY)
{{
h = hash(table[i], M * 2);
while (newtable[h] != EMPTY)

h = (h + 1) % (M * 2);
newTable[h] = table[i];
}}

/* Replace previous table */
free(table);
table = newTable;
M *= 2;
}

Is Dynamic Hashing Effective?

The cost of resizing the table seems
rather high …

However, this only happens rarely …However, this only happens rarely …
• Cost gets amortized over very many insertions

Average cost per insertion is still O(1)!

Summary

Hashing
• Linear Probing
• Double Hashing
• Dynamic Hashing

Cost of searches is nearly independent of N
• Fast searches that don't require sorting
• Not very effective if analysis requires ordered data

Recommended Reading

Sedgewick, Chapter 14

Peterson W. W. (1957) IBM Journal of
Research and Development 1:130-146

Question to ponder: Does the order in
which elements are inserted change the
total cost of building hash table?

