Random Number Generation

Biostatistics 615/815
Lecture 13
Today

- Random Number Generators
 - Key ingredient of statistical computing

- Discuss properties and defects of alternative generators
Some Uses of Random Numbers

- Simulating data
 - Evaluate statistical procedures
 - Evaluate study designs
 - Evaluate program implementations

- Controlling stochastic processes
 - Markov-Chain Monte-Carlo methods

- Selecting questions for exams
Random Numbers and Computers

- Most modern computers do not generate truly random sequences.

- Instead, they can be programmed to produce pseudo-random sequences:
 - These will behave the same as random sequences for a wide-variety of applications.
Uniform Deviates

- Fall within specific interval (usually 0..1)
- Potential outcomes have equal probability
- Usually, one or more of these deviates are used to generate other types of random numbers
C Library Implementation

// RAND_MAX is the largest value returned by rand
// RAND_MAX is 32767 on MS VC++ and on Sun Workstations
// RAND_MAX is 2147483647 on my Linux server
#define RAND_MAX XXXXX

// This function generates a new pseudo-random number
int rand();

// This function resets the sequence of
// pseudo-random numbers to be generated by rand
void srand(unsigned int seed);
Example Usage

```c
#include <stdlib.h>
#include <stdio.h>

int main()
{
    int i;

    printf("10 random numbers between 0 and %d\n", RAND_MAX);

    /* Seed the random-number generator with
     * current time so that numbers will be
     * different for every run.
     */
    srand( (unsigned) time(NULL) );

    /* Display 10 random numbers. */
    for( i = 0; i < 10; i++ )
        printf("  %6d\n", rand());
}
```
Unfortunately ...

- Many library implementations of \texttt{rand()} are botched

- Referring to an early IBM implementation, a computer consultant said ...
 - \textit{We guarantee each number is random individually, but we don’t guarantee that more than one of them is random.}
Good Advice

- Always use a random number generator that is known to produce “good quality” random numbers

- “Strange looking, apparently unpredictable sequences are not enough”
 - Park and Miller (1988) in Communications of the ACM provide several examples
Lehmer’s (1951) Algorithm

- Multiplicative linear congruential generator
 - \(I_{j+1} = aI_j \mod m \)

Where
- \(I_j \) is the \(j^{th} \) number in the sequence
- \(m \) is a large prime integer
- \(a \) is an integer \(2 \ldots m - 1 \)
Rescaling

To produce numbers in the interval 0..1:

- \(U_j = I_j / m \)

These will range between \(1/m \) and \(1 - 1/m \)
Examples

Consider the following three sequences

• $I_{j+1} = 5I_j \mod 13$

• $I_{j+1} = 6I_j \mod 13$

• $I_{j+1} = 7I_j \mod 13$
Example 1

- $l_{j+1} = 5 \cdot l_j \mod 13$

- Produces one of the sequences:
 - … 1, 5, 12, 8, 1, …
 - … 2, 10, 11, 3, 2, …
 - … 4, 7, 9, 6, 4, …

- In this case, if $m = 13$, $a = 5$ is a very poor choice
Example 2

- $l_{j+1} = 6 \cdot l_j \mod 13$
- Produces the sequence:
 - ... 1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1, ...
- Which includes all values 1 .. $m-1$ before repeating itself
Example 3

- $l_{j+1} = 7 \cdot l_j \mod 13$

- Produces the sequence:
 - ... 1, 7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2, 1 ...

- This sequence still has a full period, but looks a little less “random” …
Practical Values for a and m

- Do not choose your own (dangerous!)
- Rely on values that are known to work.

- Good sources:
 - Numerical Recipes in C
 - Park and Miller (1988) Communications of the ACM

- We will use $a = 16807$ and $m = 2147483647$
A Random Number Generator

/* This implementation will not work in
 * many systems, due to integer overflows
 */

static int seed = 1;

double Random()
{
 int a = 16807;
 int m = 2147483647; /* 2^31 – 1 */

 seed = (a * seed) % m;
 return seed / (double) m;
}

/* If this is working properly, starting with seed = 1,
 * the 10,000th call produces seed = 1043618065
 */
A Random Number Generator

/* This implementation will only work in newer compilers that
 * support 64-bit integer variables of type long long
 */

static long long seed = 1;
double Random()
{
 long long a = 16807;
 long long m = 2147483647; /* 2^31 – 1 */

 seed = (a * seed) % m;
 return seed / (double) m;
}

/* If this is working properly, starting with seed = 1,
 * the 10,000th call produces seed = 1043618065
 */
Many systems will not represent integers larger than 2^{32}

We need a practical calculation where:
- Results cover nearly all possible integers
- Intermediate values do not exceed 2^{32}
The Solution

- Let $m = aq + r$

- Where
 - $q = m / a$
 - $r = m \mod a$
 - $r < q$

- Then $aI_j \mod m = \begin{cases} a(I_j \mod q) - r[I_j / q] & \text{if } \geq 0 \\ a(I_j \mod q) - r[I_j / q] + m & \text{otherwise} \end{cases}$
Random Number Generator:
A Portable Implementation

#define RAND_A 16807
#define RAND_M 2147483647
#define RAND_Q 127773
#define RAND_R 2836
define RAND_SCALE (1.0 / RAND_M)

static int seed = 1;

double Random()
{
 int k = seed / RAND_Q;

 seed = RAND_A * (seed - k * RAND_Q) - k * RAND_R;

 if (seed < 0) seed += RAND_M;

 return seed * (double) RAND_SCALE;
}
Reliable Generator

- Fast

- Some slight improvements possible:
 - Use $a = 48271$ ($q = 44488$ and $r = 3399$)
 - Use $a = 69621$ ($q = 30845$ and $r = 23902$)

- Still has some subtle weaknesses ...
 - E.g. whenever a value $< 10^{-6}$ occurs, it will be followed by a value < 0.017, which is $10^{-6} \times \text{RAND}_A$
Further Improvements

- **Shuffle Output.**
 - Generate two sequences, and use one to permute the output of the other.

- **Sum Two Sequences.**
 - Generate two sequences, and return the sum of the two (modulus the period for either).
Example: Shuffling (Part I)

// Define RAND_A, RAND_M, RAND_Q, RAND_R as before
#define RAND_TBL 32
#define RAND_DIV (1 + (RAND_M - 1) / RAND_TBL)

static int random_next = 0;
static int random_tbl[RAND_TBL];

void SetupRandomNumbers(int seed)
{
 int j;

 if (seed == 0) seed = 1;

 for (j = RAND_TBL - 1; j >= 0; j--)
 {
 int k = seed / RAND_Q;
 seed = RAND_A * (seed - k * RAND_Q) - k * RAND_R;
 if (seed < 0) seed += RAND_M;
 random_tbl[j] = seed;
 }

 random_next = random_tbl[0];
}
Example: Shuffling (Part II)

double Random() {
 // Generate the next number in the sequence
 int k = seed / RAND_Q, index;
 seed = RAND_A * (seed - k * RAND_Q) - k * RAND_R;
 if (seed < 0) seed += RAND_M;

 // Swap it for a previously generated number
 index = random_next / RAND_DIV;
 random_next = random_tbl[index];
 random_tbl[index] = seed;

 // And return the shuffled result ...
 return random_next * (double) RAND_SCALE;
}
Shuffling ...

- Shuffling improves things, however ...

- Requires additional storage ...

- If an extremely small value occurs (e.g. $< 10^{-6}$) it will be slightly correlated with other nearby extreme values.
Summing Two Sequences (I)

#define RAND_A1 40014
#define RAND_M1 2147483563
#define RAND_Q1 53668
#define RAND_R1 12211

#define RAND_A2 40692
#define RAND_M2 2147483399
#define RAND_Q2 52744
#define RAND_R2 3791

#define RAND_SCALE1 (1.0 / RAND_M1)
Summing Two Sequences (II)

```c
static int seed1 = 1, seed2 = 1;

double Random()
{
    int k, result;

    k = seed1 / RAND_Q1;
    seed1 = RAND_A1 * (seed1 - k * RAND_Q1) - k * RAND_R1;
    if (seed1 < 0) seed1 += RAND_M1;

    k = seed2 / RAND_Q2;
    seed2 = RAND_A2 * (seed2 - k * RAND_Q2) - k * RAND_R2;
    if (seed2 < 0) seed2 += RAND_M2;

    result = seed1 - seed2;
    if (result < 1) result += RAND_M1 - 1;

    return result * (double) RAND_SCALE1;
}
```
Summing Two Sequences

- If the sequences are uncorrelated, we can do no harm:
 - If the original sequence is “random”, summing a second sequence will preserve the original randomness.

- In the ideal case, the period of the combined sequence will be the least common multiple of the individual periods.
It is possible to sum more sequences to increase randomness.

One example is the Wichman Hill random number generator, where:
- $A_1 = 171, M_1 = 30269$
- $A_2 = 172, M_2 = 30307$
- $A_3 = 170, M_3 = 30323$

Values for each sequence are:
- Scaled to the interval $(0,1)$
- Summed
- Integer part of sum is discarded
So far …

- Uniformly distributed random numbers
 - Using Lehmer’s algorithm
 - Work well for carefully selected parameters

- “Randomness” can be improved:
 - Through shuffling
 - Summing two sequences
 - Or both (see Numerical Recipes for an example)
Random Numbers in R

- In R, multiple generators are supported

- To select a specific sequence use:
 - `RNGkind()` -- select algorithm
 - `RNGversion()` -- mimics older R versions
 - `set.seed()` -- selects specific sequence

- Use `help(RNGkind)` for details
Many custom functions:

- `runif(n, min = 0, max = 1)`
- `rnorm(n, mean = 0, sd = 1)`
- `rt(n, df)`
- `rchisq(n, df, ncp = 0)`
- `rf(n, df1, df2)`
- `rexp(n, rate = 1)`
- `rgamma(n, shape, rate = 1)`
The general approach for sampling from an arbitrary distribution is to:

- Define
 - Cumulative density function $F(x)$
 - Inverse cumulative density function $F^{-1}(x)$

- Sample $x \sim U(0,1)$
- Evaluate $F^{-1}(x)$
Example: Exponential Distribution

- **Consider:**
 - $f(x) = e^{-x}$
 - $F(x) = 1 - e^{-x}$
 - $F^{-1}(y) = -\ln(1 - y)$

```cpp
double RandomExp()
{
    return -log(Random());
}
```
Example: Categorical Data

- To sample from a discrete set of outcomes, use:

```c
int SampleCategorical(int outcomes, double * probs) {
    double prob = Random();
    int outcome = 0;

    while (outcome + 1 < outcomes && prob > probs[outcome]) {
        prob -= probs[outcome];
        outcome++;
    }

    return outcome;
}
```
More Useful Examples

- Numerical Recipes in C has additional examples, including algorithms for sampling from normal and gamma distributions.
The Mersenne Twister

- Current gold standard random generator

 Web: www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
 - Or Google for “Mersenne Twister”

- Has a very long period \(2^{19937} - 1\)
- Equi-distributed in up to 623 dimensions
Recommended Reading

- Numerical Recipes in C
 - Chapters 7.1 – 7.3

- Park and Miller (1998)
 “Random Number Generators: Good Ones Are Hard To Find”
 Communications of the ACM
Implementation Without Division

- Let $a = 16807$ and $m = 2147483647$

- It is actually possible to implement Park-Miller generator without any divisions
 - Division is 20-40x slower than other operations

- Solution proposed by D. Carta (1990)
A Random Number Generator

/* This implementation is very fast, because there is no division */

static unsigned int seed = 1;
int RandomInt()
{
 // After calculation below, (hi << 16) + lo = seed * 16807
 unsigned int lo = 16807 * (seed & 0xFFFF); // Multiply lower 16 bits by 16807
 unsigned int hi = 16807 * (seed >> 16); // Multiply higher 16 bits by 16807

 // After these lines, lo has the bottom 31 bits of result, hi has bits 32 and up
 lo += (hi & 0x7FFF) << 16; // Combine lower 15 bits of hi with lo’s upper bits
 hi >>= 15; // Discard the lower 15 bits of hi

 // value % (2^{31} - 1) = ((2^{31}) * hi + lo) % (2^{31} - 1)
 // = ((2^{31} - 1) * hi + hi + lo) % (2^{31}-1)
 // = (hi + lo) % (2^{31} - 1)
 lo += hi;

 // No division required, since hi + lo is always < 2^{32} - 2
 if (lo > 2147483647) lo -= 2147483647;

 return (seed = lo);
}