Random Number Generation

Biostatistics 615/815 Lecture 13

Today

- Random Number Generators
 - Key ingredient of statistical computing
- Discuss properties and defects of alternative generators

Some Uses of Random Numbers

- Simulating data
 - Evaluate statistical procedures
 - Evaluate study designs
 - Evaluate program implementations
- Controling stochastic processes
 - Markov-Chain Monte-Carlo methods
- Selecting questions for exams

Random Numbers and Computers

- Most modern computers do not generate truly random sequences
- Instead, they can be programmed to produce pseudo-random sequences
 - These will behave the same as random sequences for a wide-variety of applications

Uniform Deviates

- Fall within specific interval (usually 0..1)
- Potential outcomes have equal probability
- Usually, one or more of these deviates are used to generate other types of random numbers

C Library Implementation

Example Usage

```
#include <stdlib.h>
#include <stdio.h>
int main()
   int i;
  printf("10 random numbers between 0 and %d\n", RAND_MAX);
   /* Seed the random-number generator with
    * current time so that numbers will be
    * different for every run.
    * /
   srand( (unsigned) time(NULL) );
   /* Display 10 random numbers. */
   for( i = 0; i < 10; i++ )
     printf( " %6d\n", rand() );
```

Unfortunately ...

 Many library implementations of rand() are botched

- Referring to an early IBM implementation, a computer consultant said ...
 - We guarantee each number is random individually, but we don't guarantee that more than one of them is random.

Good Advice

 Always use a random number generator that is known to produce "good quality" random numbers

- "Strange looking, apparently unpredictable sequences are not enough"
 - Park and Miller (1988) in Communications of the ACM provide several examples

Lehmer's (1951) Algorithm

Multiplicative linear congruential generator

 $I_{j+1} = aI_j \bmod m$

- Where
 - I_i is the jth number in the sequence
 - m is a large prime integer
 - a is an integer 2 .. m 1

Rescaling

To produce numbers in the interval 0..1:

$$U_j = I_j / m$$

• These will range between 1/m and 1 - 1/m

Examples

Consider the following three sequences

$$I_{j+1} = 5 I_j \mod 13$$

$$I_{j+1} = 6 I_j \mod 13$$

$$I_{j+1} = 7 I_j \mod 13$$

Example 1

• $I_{j+1} = 5 I_j \mod 13$

- Produces one of the sequences:
 - ... 1, 5, 12, 8, 1, ...
 - ... 2, 10, 11, 3, 2, ...
 - ... 4, 7, 9, 6, 4, ...
- In this case, if m = 13, a = 5 is a very poor choice

Example 2

• $I_{j+1} = 6 I_j \mod 13$

- Produces the sequence:
 - ... 1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1, ...

 Which includes all values 1 .. m-1 before repeating itself

Example 3

• $I_{j+1} = 7 I_j \mod 13$

- Produces the sequence:
 - 1, 7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2, 1 ...

 This sequence still has a full period, but looks a little less "random" ...

Practical Values for a and m

- Do not choose your own (dangerous!)
- Rely on values that are known to work.
- Good sources:
 - Numerical Recipes in C
 - Park and Miller (1988) Communications of the ACM
- We will use a = 16807 and m = 2147483647

A Random Number Generator

```
/* This implementation will not work in
 * many systems, due to integer overflows
 */
static int seed = 1;
double Random()
   int a = 16807;
   int m = 2147483647; /* 2^31 - 1 */
   seed = (a * seed) % m;
   return seed / (double) m;
/* If this is working properly, starting with seed = 1,
 * the 10,000th call produces seed = 1043618065
 */
```

A Random Number Generator

```
/* This implementation will only work in newer compilers that
 * support 64-bit integer variables of type long long
 */
static long long seed = 1;
double Random()
   long long a = 16807;
   long long m = 2147483647; /* 2^31 - 1 */
   seed = (a * seed) % m;
   return seed / (double) m;
/* If this is working properly, starting with seed = 1,
 * the 10,000th call produces seed = 1043618065
 */
```

Practical Computation

- Many systems will not represent integers larger than 2³²
- We need a practical calculation where:
 - Results cover nearly all possible integers
 - Intermediate values do not exceed 2³²

The Solution

• Let m = aq + r

- Where
 - q = m/a
 - $r = m \mod a$
 - r < q

• Then
$$aI_j \mod m = \begin{cases} a(I_j \mod q) - r[I_j/q] & \text{if } \ge 0 \\ a(I_j \mod q) - r[I_j/q] + m \end{cases}$$

Random Number Generator: A Portable Implementation

```
#define RAND A 16807
#define RAND_M 2147483647
#define RAND Q 127773
#define RAND R 2836
#define RAND SCALE (1.0 / RAND M)
static int seed = 1;
double Random()
   int k = seed / RAND Q;
   seed = RAND A * (seed - k * RAND Q) - k * RAND R;
   if (seed < 0) seed += RAND M;</pre>
   return seed * (double) RAND SCALE;
```

Reliable Generator

- Fast
- Some slight improvements possible:
 - Use a = 48271 (q = 44488 and r = 3399)
 - Use a = 69621 (q = 30845 and r = 23902)
- Still has some subtle weaknesses ...
 - E.g. whenever a value < 10⁻⁶ occurs, it will be followed by a value < 0.017, which is 10⁻⁶ * RAND_A

Further Improvements

Shuffle Output.

 Generate two sequences, and use one to permute the output of the other.

Sum Two Sequences.

 Generate two sequences, and return the sum of the two (modulus the period for either).

Example: Shuffling (Part I)

```
// Define RAND A, RAND M, RAND Q, RAND R as before
#define RAND TBL 32
#define RAND DIV (1 + (RAND M - 1) / RAND TBL)
static int random next = 0;
static int random tbl[RAND TBL];
void SetupRandomNumbers(int seed)
   int j;
   if (seed == 0) seed = 1;
   for (j = RAND_TBL - 1; j >= 0; j--)
       int k = seed / RAND 0;
       seed = RAND_A * (seed - k * RAND_Q) - k * RAND_R;
       if (seed < 0) seed += RAND_M;</pre>
       random_tbl[j] = seed;
   random next = random tbl[0];
```

Example: Shuffling (Part II)

```
double Random()
   // Generate the next number in the sequence
   int k = seed / RAND_Q, index;
   seed = RAND A * (seed - k * RAND O) - k * RAND R;
   if (seed < 0) seed += RAND M;</pre>
   // Swap it for a previously generated number
   index = random next / RAND DIV;
   random next = random tbl[index];
   random tbl[index] = seed;
   // And return the shuffled result ...
   return random next * (double) RAND SCALE;
```

Shuffling ...

Shuffling improves things, however ...

Requires additional storage ...

If an extremely small value occurs (e.g. < 10⁻⁶) it will be slightly correlated with other nearby extreme values.

Summing Two Sequences (I)

```
#define RAND_A1 40014
#define RAND_M1
                2147483563
#define RAND Q1 53668
                12211
#define RAND R1
#define RAND A2 40692
#define RAND_M2 2147483399
#define RAND Q2 52744
                 3791
#define RAND R2
#define RAND SCALE1 (1.0 / RAND M1)
```

Summing Two Sequences (II)

```
static int seed1 = 1, seed2 = 1;
double Random()
   int k, result;
   k = seed1 / RAND 01;
   seed1 = RAND A1 * (seed1 - k * RAND Q1) - k * RAND R1;
   if (seed1 < 0) seed1 += RAND M1;</pre>
   k = seed2 / RAND_Q2;
   seed2 = RAND A2 * (seed2 - k * RAND Q2) - k * RAND R2;
   if (seed2 < 0) seed2 += RAND M2;
   result = seed1 - seed2;
   if (result < 1) result += RAND_M1 - 1;</pre>
   return result * (double) RAND SCALE1;
```

Summing Two Sequences

- If the sequences are uncorrelated, we can do no harm:
 - If the original sequence is "random", summing a second sequence will preserve the original randomness
- In the ideal case, the period of the combined sequence will be the least common multiple of the individual periods

Summing More Sequences

- It is possible to sum more sequences to increase randomness
- One example is the Wichman Hill random number generator, where:
 - A1 = 171, M1 = 30269
 - A2 = 172, M2 = 30307
 - A3 = 170, M3 = 30323
- Values for each sequence are:
 - Scaled to the interval (0,1)
 - Summed
 - Integer part of sum is discarded

So far ...

- Uniformly distributed random numbers
 - Using Lehmer's algorithm
 - Work well for carefully selected parameters
- "Randomness" can be improved:
 - Through shuffling
 - Summing two sequences
 - Or both (see Numerical Recipes for an example)

Random Numbers in R

In R, multiple generators are supported

To select a specific sequence use:

```
PRNGkind() -- select algorithm
```

- RNGversion() -- mimics older R versions
- set.seed() -- selects specific sequence

Use help(RNGkind) for details

Random Numbers in R

Many custom functions:

```
• runif(n, min = 0, max = 1)
```

- \bullet rnorm(n, mean = 0, sd = 1)
- •rt(n, df)
- rchisq(n, df, ncp = 0)
- •rf(n, df1, df2)
- rexp(n, rate = 1)
- rgamma(n, shape, rate = 1)

Sampling from Arbitrary Distributions

- The general approach for sampling from an arbitrary distribution is to:
- Define
 - Cumulative density function F(x)
 - Inverse cumulative density function F⁻¹(x)
- Sample x ~ U(0,1)
- Evaluate F⁻¹(x)

Example: Exponential Distribution

Consider:

```
• f(x) = e<sup>-x</sup>
• F(x) = 1 - e<sup>-x</sup>
• F<sup>-1</sup>(y) = -ln(1 - y)

double RandomExp()
{
   return -log(Random());
}
```

Example: Categorical Data

To sample from a discrete set of outcomes, use:

```
int SampleCategorical(int outcomes, double * probs)
{
  double prob = Random();
  int outcome = 0;

  while (outcome + 1 < outcomes && prob > probs[outcome])
    {
     prob -= probs[outcome];
     outcome++;
     }

  return outcome;
}
```

More Useful Examples

 Numerical Recipes in C has additional examples, including algorithms for sampling from normal and gamma distributions

The Mersenne Twister

Current gold standard random generator

- Web: www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
 - Or Google for "Mersenne Twister"
- Has a very long period (2¹⁹⁹³⁷ 1)
- Equi-distributed in up to 623 dimensions

Recommended Reading

- Numerical Recipes in C
 - Chapters 7.1 7.3
- Park and Miller (1998)

"Random Number Generators:

Good Ones Are Hard To Find"

Communications of the ACM

Implementation Without Division

• Let a = 16807 and m = 2147483647

- It is actually possible to implement Park-Miller generator without any divisions
 - Division is 20-40x slower than other operations
- Solution proposed by D. Carta (1990)

A Random Number Generator

```
/* This implementation is very fast, because there is no division */
static unsigned int seed = 1;
int RandomInt()
   // After calculation below, (hi << 16) + lo = seed * 16807
  unsigned int lo = 16807 * (seed & OxFFFF); // Multiply lower 16 bits by 16807
  unsigned int hi = 16807 * (seed >> 16);  // Multiply higher 16 bits by 16807
  // After these lines, lo has the bottom 31 bits of result, hi has bits 32 and up
   lo += (hi & 0x7FFF) << 16; // Combine lower 15 bits of hi with lo's upper bits
  hi >>= 15;
                                    // Discard the lower 15 bits of hi
   // value % (2^{31} - 1)) = ((2^{31}) * hi + lo) % (2^{31} - 1)
                       = ((2^{31} - 1) * hi + hi + lo) % (2^{31}-1)
   //
                       = (hi + lo) % (2^{31} - 1)
   11
   lo += hi;
   // No division required, since hi + lo is always < 2^{32} - 2
   if (10 > 2147483647) lo -= 2147483647;
   return (seed = lo);
```