Minimization With Parabolas

Biostatistics 615/815
Lecture 15

Last Lecture

- Root finding
- Bisection of bracketing interval
- Using a linear approximation
- Optimization
- Bracketing triplet
- Golden section search

Today ...

- More on numerical optimization
- Parabolic interpolation
- Adaptive method
- Multi-dimensional optimization problem
- Mixture distributions

Better Numerical Optimization

- As with root finding, performance can improve substantially when a local approximation is used
- Degree of improvement depends on function being approximated
- Construct an approximation with the current bracketing triplet
- High order approximations can have strange bends

Approximating The Function

Parabolic Approximation

$$
f^{*}(x)=A x^{2}+B x+C
$$

The value which minimizes $f^{*}(x)$ is

$$
x_{\min }=-\frac{B}{2 A}
$$

Using this strategy to minimize the function is called "inverse parabolic interpolation"

Fitting a Parabola

- Can be fitted with three points
- Points must not be co-linear

$$
\begin{aligned}
& C=f\left(x_{1}\right)-A x_{1}^{2}-B x_{1} \\
& B=\frac{A\left(x_{2}^{2}-x_{1}^{2}\right)+\left(f\left(x_{1}\right)-f\left(x_{2}\right)\right)}{x_{1}-x_{2}} \\
& A=\frac{f\left(x_{3}\right)-f\left(x_{2}\right)}{\left(x_{3}-x_{2}\right)\left(x_{3}-x_{1}\right)}-\frac{f\left(x_{1}\right)-f\left(x_{2}\right)}{\left(x_{1}-x_{2}\right)\left(x_{3}-x_{1}\right)}
\end{aligned}
$$

Minimum for a Parabola

- General expression for finding minimum of a parabola fitted through three points
- Note repeated sub-expressions

$$
x_{\min }=x_{2}-\frac{1}{2} \frac{\left(x_{2}-x_{1}\right)^{2}\left(f\left(x_{2}\right)-f\left(x_{3}\right)\right)-\left(x_{2}-x_{3}\right)^{2}\left(f\left(x_{2}\right)-f\left(x_{1}\right)\right)}{\left(x_{2}-x_{1}\right)\left(f\left(x_{2}\right)-f\left(x_{3}\right)\right)-\left(x_{2}-x_{3}\right)\left(f\left(x_{2}\right)-f\left(x_{1}\right)\right)}
$$

Fitting a Parabola

```
// Returns the distance between b and the abscissa for the
// fitted minimum using parabolic interpolation
double parabola_step (double a, double fa,
            double b, double fb, double c, double fc)
{
// Quantities for placing minimum of fitted parabola
double p = (b - a) * (fb - fc);
double q = (b - c) * (fb - fa);
double x = (b - c) * q - (b - a) * p;
double y = 2.0 * (p - q);
// Check that q is not zero
if (fabs(y) < ZEPS)
    return golden_step (a, b, c);
else
    return x / y;
}
```


Caution:
 Using Fitted Minimum

- Fitted minimum could overlap with one of original points
- Could produce degenerate case
- Ensure that each new point is distinct from previously examined points

Avoiding Degenerate Steps

double adjust_step(double a, double b, double c, double step, double e) \{ double min_step $=$ fabs(e * b) + ZEPS;
if (fabs(step) < min_step);
return step > 0 ? min_step : -min_step;
// If the step ends up to close to previous points,
// return zero to force a golden ratio step ...
if (fabs(b + step - a) <= e || fabs(b + step - c) <= e) return 0.0;
return step;
\}

Generating New Points

- Use parabolic interpolation by default
- Check whether improvement is slow
- Step sizes are not decreasing rapidly enough
- Switch to golden section if function is uncooperative

Calculating Step Size

double calculate_step(double a, double fa, double b, double fb , double c , double fc , double last_step, double e)
\{ double step $=$ parabola_step($a, f a, b, f b, c, f c)$; step $=$ adjust_step(a, b, c, step, e);
if (fabs(step) > fabs(0.5 * last_step) || step == 0.0) step $=$ golden_step(a, b, c);
return step;
\}

Overall

The main function simply has to:
${ }^{\circ}$ Generate new points using building blocks

- Update the triplet bracketing the minimum
- Check for convergence

Overall Minimization Routine

double find_minimum(double (*func)(double), double a, double b, double c, double e)
\{
double fa $=$ (*func)(a), fb $=(* f u n c)(b), f c=(* f u n c)(c)$;
double step1 $=(c-a) * 0.5, ~ s t e p 2=(c-a) * 0.5 ;$
while (fabs(c - a) > fabs(b*e) + ZEPS)
\{
double step = calculate_step ($a, f a, b, f b, c, f c$, step2, $e)$;
double $x=b+s t e p ; ~ d o u b l e ~ f x=(* f u n c)(x)$;
if (fx $<\mathrm{fb}$)
\{
if $(x>b)\{a=b ; f a=f b ;\}$ else $\{c=b ; f c=f b ;\}$
$b=x ; f b=f x ;$
\}
else
if $(x<b)\{a=x ; f a=f x ;\}$ else $\{c=x ; f c=f x ;\}$
step2 = step1; step1 = step;
\}
return b;
\}

Important Characteristics

- Parabolic interpolation often convergences faster
- The preferred algorithm
- Golden search provides performance guarantee
- A fall-back for uncooperative functions
- Switch algorithms when convergence slow
- Allow parabolic interpolation one poor choice
- Avoid testing points that are too close

Brent's Strategy

- Most popular strategy for minimization without derivatives
- Part of Richard Brent's PhD thesis in 1971
- Similar to the one we described:
- Inverse Quadratic Interpolation, where possible
- Golden Section Search, fall-back

Brent's Strategy

- Track 6 points
- Not all distinct
- The bracket boundaries (a, b)
- The current minimum (x)
- The second and third smallest values (w, v)
- The new point to be examined (u)
- Parabolic interpolation uses (x, w, v) to propose new value for u
- Additional care required to ensure u falls between a and b

Recommended Reading

- Numerical Recipes in C (or C++)
- Press, Teukolsky, Vetterling, Flannery
- Chapters 10.0-10.2
- Excellent resource for scientific computing
- Online at
- http://www.numerical-recipes.com/
- http://www.library.cornell.edu/nr/

Next topic: Multi-dimensional Optimization

- Simplex method of Nelder and Mead
- The Expectation Maximization algorithm
- Monte-Carlo Methods
- Metropolis algorithm
- Gibbs sampling

A Multi-Dimensional Problem: Mixture Distributions

- Interesting application for multidimensional optimization
- Related to many useful statistical problems
- Clustering
- Classification

Classification

Classification

Clustering

- Starting with points with unknown sources

Clustering

- Starting with points with unknown sources
- Find appropriate grouping scheme

A simple distribution

- For many continuous measurements, normal distribution is a good starting point
- Parameters are easy to estimate from the sample

Heights for 4,102 Individuals

Entire Sample

Mean $=\sim 160 \mathrm{~cm}$, Variance $=\sim 80$

Normal Density

- If the data is normally distributed, the density function for each component is

$$
f(x \mid \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

C Code: Normal Density

\#include <math.h>
double square(double x)
\{ return x * x; \}
double dnorm(double x, double mu, double sigma)
\{
return 1.0 / (sigma * sqrt(M_PI * 2.0)) * $\exp (-0.5$ * $\operatorname{square((x-mu)/sigma));~}$
\}

A Simple Mixture Distribution

- Observations are univariate
- Single measurement
- Each component has a normal distribution

Two Underlying Distributions

Group 1

Mean $=\sim 154 \mathrm{~cm}$

Group 2

Mean $=\sim 166 \mathrm{~cm}$

A General Mixture Distribution

$$
p(x \mid \boldsymbol{\pi}, \boldsymbol{\varphi}, \eta)=\pi_{1} f\left(x \mid \varphi_{1}, \eta\right)+\ldots+\pi_{k} f\left(x \mid \varphi_{2}, \eta\right)
$$

- x is the observation
- π are the mixture proportions
- f is the probability density function
- ϕ are parameters for each component
- η are parameters shared among components
- k is the number of components

C Code: Mixture Distribution

double dmix(double x, int k, double probs[], double means[], double sigmas[])
\{ int i; double density $=0.0$;
for (i = 0; i < k; i++) density += probs[i] * dnorm(x, means[i], sigmas[i]);
return density;
\}

Maximum Likelihood Approach

- Find the parameters that maximize the likelihood for the entire sample

$$
L=\prod_{j} p\left(x_{j} \mid \pi, \varphi, \eta\right)
$$

- It is advisable to consider the log-likelihood instead to avoid underflows!

$$
\ell=\sum_{j} \log p\left(x_{j} \mid \pi, \varphi, \eta\right)
$$

C Code: Overall Log-Likelihood

double mixLLK(int n, double $\times[]$, int k, double probs[], double means[], double sigmas[])
\{
int i;
double llk = 0.0;
for (int i = 0; i < n; i++) llk += log(dmix(x[i], k, probs, means, sigmas));
return llk;
\}

Missing Data Formulation

- For each observation i, we are missing some specific (and interesting) information

The group membership indicator Z_{i}

- If this were observed, the entire problem could become quite simple

Classification Probabilities

$$
\begin{aligned}
& \operatorname{Pr}\left(Z_{j}=i \mid \boldsymbol{\pi}, \varphi, \eta\right)=\pi_{i} \\
& \operatorname{Pr}\left(Z_{j}=i \mid x_{j}, \pi, \varphi, \eta\right)=\frac{\pi_{i} f\left(x_{j} \mid \phi_{i}, \eta\right)}{\sum_{l} \pi_{l} f\left(x_{j} \mid \phi_{l}, \eta\right)}
\end{aligned}
$$

- Results from the application of Bayes' theorem
- Probabilistic interpretation...

C Code: Classification Probabilities

double classprob(int j, double x, int k, double probs[], double means[], double sigmas[])
\{ double $\mathrm{p}=\mathrm{probs[j]}$ * dnorm(x, means[j], sigmas[j]);
return p / dmix(x, k, probs, means, sigmas); \}

- Calculates the probability that observation x belongs to component j

A related problem

- Estimating the number of components
- Can be interesting in itself!
- The maximum likelihood approach requires a preset number of components
- Penalized likelihood approaches required...

Example: Galaxy Speeds

Data of Postman et al. (1986) in the Astronomical Journal.

Fitting 3 Components (Stephens, 1997)

Fitting 6 Components (Stephens, 1997)

Today ...

- An introduction to mixture distributions
- Basic routines for modeling these data
- In the upcoming lectures, we will examine how to fit these mixtures appropriately to data

Additional Reading

- If you need a refresher on mixture distributions...
- Bayesian Methods for Mixture Distributions
M. Stephens (1997)
http://www.stat.washington.edu/stephens/
- Chapter 1 recommended

