
Minimization With
Parabolas

Biostatistics 615/815
Lecture 15Lecture 15

Last Lecture

Root finding
• Bisection of bracketing interval
• Using a linear approximation

Optimization
• Bracketing triplet
• Golden section search

Today …

More on numerical optimization
• Parabolic interpolation
• Adaptive method

Multi-dimensional optimization problem
• Mixture distributionsMixture distributions

Better Numerical Optimization
As with root finding, performance can improve
substantially when a local approximation is used

Degree of improvement depends on function
being approximatedg pp

Construct an approximation with the current
bracketing triplet
• High order approximations can have strange bends

Approximating The Function

Parabolic Approximation

)(* 2 CBxAxxf ++=

 is minimizes which valueThe f*(x)

2min A
Bx −=

ion"interpolatparabolicinverse"
called isfunction theminimize ostrategy t thisUsing

ion"interpolatparabolicinverse"

Fitting a Parabola

Can be fitted with three points
• Points must not be co-linear

))()(()(

)(
22

1
2
11

ffA

BxAxxfC

+

−−=

))()(()(

21

21
2
1

2
2

xx
xfxfxxAB

−
−+−

=

))((
)()(

))((
)()(

1321

21

1323

23

xxxx
xfxf

xxxx
xfxfA

−−
−

−
−−

−
=

))(())((13211323

Minimum for a Parabola

General expression for finding minimum of a
parabola fitted through three points
• N t t d b i• Note repeated sub-expressions

() ()
() ())()()()()()(

)()()()()()(
2
1

12323212

12
2

3232
2

12
2min xfxfxxxfxfxx

xfxfxxxfxfxxxx
−−−−−
−−−−−

−= () ())()()()()()(12323212 ffff

Fitting a Parabola
//// Returns the distance between b and the abscissa for the
// fitted minimum using parabolic interpolation
double parabola_step (double a, double fa,

double b, double fb, double c, double fc)
{
// Quantities for placing minimum of fitted parabola
double p = (b - a) * (fb - fc);
double q = (b - c) * (fb - fa);
d bl () * () *double x = (b - c) * q - (b - a) * p;
double y = 2.0 * (p - q);

// Check that q is not zero
if (f b ())if (fabs(y) < ZEPS)

return golden_step (a, b, c);
else

return x / y;
}}

Caution:Caution:
Using Fitted Minimum

Fitted minimum could overlap with one of
original points
• Could produce degenerate case

Ensure that each new point is distinct from
previously examined pointsp y p

Avoiding Degenerate Steps
double adjust_step(double a, double b, double c, double step, double e)

{
double min_step = fabs(e * b) + ZEPS;

if (fabs(step) < min_step);
return step > 0 ? min_step : -min_step;

// If the step ends up to close to previous points,
// f ld i// return zero to force a golden ratio step ...
if (fabs(b + step - a) <= e || fabs(b + step - c) <= e)

return 0.0;

return step;
}

Generating New Points

Use parabolic interpolation by default

Check whether improvement is slow
• Step sizes are not decreasing rapidly enoughStep sizes are not decreasing rapidly enough

Switch to golden section if function isSwitch to golden section if function is
uncooperative

Calculating Step Size
double calculate_step(double a, double fa,

double b, double fb, double c, double fc,
double last_step, double e)

{{
double step = parabola_step(a, fa, b, fb, c, fc);
step = adjust_step(a, b, c, step, e);

if (f b (t) > f b (0 5 * l t t) || t 0 0)if (fabs(step) > fabs(0.5 * last_step) || step == 0.0)
step = golden_step(a, b, c);

return step;p
}

Overall

The main function simply has to:
• Generate new points using building blocks

• Update the triplet bracketing the minimum

• Check for convergence

Overall Minimization Routine
double find_minimum(double (*func)(double), double a, double b, double c, _

double e)
{
double fa = (*func)(a), fb = (*func)(b), fc = (*func)(c);
double step1 = (c - a) * 0.5, step2 = (c - a) * 0.5;

while (fabs(c - a) > fabs(b * e) + ZEPS)
{
double step = calculate_step (a, fa, b, fb, c, fc, step2, e);
double x = b + step; double fx = (*func)(x);

if (fx < fb)
{
if (x > b) { a = b; fa = fb; } else { c = b; fc = fb; }
b = x; fb = fx;
}}

else
if (x < b) { a = x; fa = fx; } else { c = x; fc = fx; }

step2 = step1; step1 = step;
}}

return b;
}

Important Characteristics

Parabolic interpolation often convergences faster
• The preferred algorithm

Golden search provides performance guarantee
• A fall-back for uncooperative functionsp

Switch algorithms when convergence slow
• Allow parabolic interpolation one poor choice

Avoid testing points that are too closeAvoid testing points that are too close

Brent's Strategy

Most popular strategy for minimization
without derivatives
• Part of Richard Brent's PhD thesis in 1971

Similar to the one we described:
• Inverse Quadratic Interpolation, where possibleInverse Quadratic Interpolation, where possible
• Golden Section Search, fall-back

Brent's Strategy
Track 6 pointsTrack 6 points
• Not all distinct
• The bracket boundaries (a, b)The bracket boundaries (a, b)
• The current minimum (x)
• The second and third smallest values (w, v)
• The new point to be examined (u)

Parabolic interpolation uses (x w v) to proposeParabolic interpolation uses (x, w, v) to propose
new value for u
• Additional care required to ensure u falls between a and bq

Recommended Reading

Numerical Recipes in C (or C++)
• Press, Teukolsky, Vetterling, Flannery
• Ch 10 0 10 2• Chapters 10.0 – 10.2

Excellent resource for scientific computingExcellent resource for scientific computing

O li tOnline at
• http://www.numerical-recipes.com/
• http://www library cornell edu/nr/• http://www.library.cornell.edu/nr/

Next topic:Next topic:
Multi-dimensional Optimization

Simplex method of Nelder and Mead

The Expectation Maximization algorithm

Monte-Carlo Methods
• M t li l ith• Metropolis algorithm
• Gibbs sampling

A Multi-Dimensional Problem:A Multi Dimensional Problem:
Mixture Distributions

Interesting application for multidimensional
optimization

Related to many useful statistical problemsRelated to many useful statistical problems
• Clustering
• ClassificationClassification

Classification

Given elements with
known groupings …

Classification

Given elements with
known groupings …

Assign grouping for a
new element

Clustering

Starting with points
with unknown sources
…

Clustering

Starting with points
with unknown sources

Find appropriate
grouping scheme

A simple distribution

For many continuous measurements,
normal distribution is a good starting
point

Parameters are easy to estimate from
the samplep

Heights for 4,102 Individuals
Entire Sample

60
0

70
0

qu
en

cy 40
0

50
0

Fr
eq

00
20

0
30

0

Height (cm)

100 120 140 160 180 200

0
1

Mean = ~160 cm, Variance = ~80

Normal Density

If the data is normally distributed, the density
function for each component is

211 ⎟
⎞

⎜
⎛ −μx

2

2
1),|(

⎟
⎠

⎜
⎝

−
= σ

μ

πσ
σμ exf

2πσ

C Code:C Code:
Normal Density
#include <math.h>

double square(double x)q ()
{ return x * x; }

double dnorm(double x double mu double sigma)double dnorm(double x, double mu, double sigma)
{
return 1.0 / (sigma * sqrt(M_PI * 2.0)) *

exp (-0.5 * square((x - mu)/sigma));
}

A Simple Mixture Distribution

Observations are univariate
• Single measurement

Each component has a normal
distribution

Two Underlying Distributions

Group 2

00
35

0

Group 1

50
0

qu
en

cy 20
0

25
0

30

qu
en

cy

30
0

40
0

5

Fr
eq

50
10

0
15

0Fr
eq

10
0

20
0

Height (cm)

100 120 140 160 180 200

0

Height (cm)

100 120 140 160 180 200

0

Mean = ~154 cm Mean = ~166 cm

A General Mixture Distribution

),|(...),|(),,|(211 ηϕπηϕπη xfxfxp k++=φπ

x is the observation
π are the mixture proportions
f is the probability density function
φ are parameters for each componentφ p p
η are parameters shared among components
k is the number of componentsp

C Code:C Code:
Mixture Distribution
double dmix(double x,double dmix(double x,

int k,
double probs[],
double means[],
double sigmas[])

{
int i;
double density = 0.0;

for (i = 0; i < k; i++)
d it + b [i] *density += probs[i] *

dnorm(x, means[i], sigmas[i]);

return density;return density;
}

Maximum Likelihood Approach

Find the parameters that maximize the
likelihood for the entire sample

∏=
j

jxpL),,|(ηϕπ

It is advisable to consider the log-likelihood
instead to avoid underflows!

∑=
j

jxp),,|(log ηϕπl
j

C Code:C Code:
Overall Log-Likelihood

double mixLLK(int n, double x[],
int k, double probs[], double means[],
double sigmas[])

{{
int i;
double llk = 0.0;

for (int i = 0; i < n; i++)
llk += log(dmix(x[i], k, probs, means, sigmas));

return llk;
}

Missing Data Formulation

For each observation i, we are missing
some specific (and interesting) information

The group membership indicator ZiThe group membership indicator Zi

• If this were observed, the entire problem couldIf this were observed, the entire problem could
become quite simple

Classification Probabilities

== ij ,iZ),|Pr(πηφπ

∑
==

ljl

iji
jj xf

xf
,xiZ

),|(
),|(

),,|Pr(
ηφπ

ηφπ
ηφπ

∑
l

ljl

Results from the application of Bayes' theorempp y

Probabilistic interpretation…p

C Code:C Code:
Classification Probabilities
double classprob(int j, double x, int k,

double probs[], double means[],
double sigmas[])

{
double p = probs[j] *

dnorm(x, means[j], sigmas[j]);

return p / dmix(x, k, probs, means, sigmas);
}

Calculates the probability that observation x belongs to
component jp j

A related problem

Estimating the number of components
• Can be interesting in itself!

The maximum likelihood approach
requires a preset number of componentsrequires a preset number of components

P li d lik lih d hPenalized likelihood approaches
required…

Example: Galaxy Speeds

Data of Postman et al. (1986) in the Astronomical Journal.

Fitting 3 ComponentsFitting 3 Components
(Stephens, 1997)

Fitting 6 ComponentsFitting 6 Components
(Stephens, 1997)

Today …

An introduction to mixture distributions

Basic routines for modeling these data

In the upcoming lectures, we will
examine how to fit these mixturesexamine how to fit these mixtures
appropriately to data

Additional Reading

If you need a refresher on mixture
distributions…
• Bayesian Methods for Mixture Distributions

M. Stephens (1997)
http // stat ashington ed /stephens/http://www.stat.washington.edu/stephens/

• Chapter 1 recommended• Chapter 1 recommended

