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Last Lecture

Root finding
• Bisection of bracketing interval
• Using a linear approximation

Optimization
• Bracketing triplet
• Golden section search



Today …

More on numerical optimization
• Parabolic interpolation
• Adaptive method

Multi-dimensional optimization problem
• Mixture distributionsMixture distributions



Better Numerical Optimization
As with root finding, performance can improve 
substantially when a local approximation is used

Degree of improvement depends on function 
being approximatedg pp

Construct an approximation with the current 
bracketing triplet
• High order approximations can have strange bends



Approximating The Function



Parabolic Approximation
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Fitting a Parabola

Can be fitted with three points
• Points must not be co-linear
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Minimum for a Parabola

General expression for finding minimum of a 
parabola fitted through three points
• N t t d b i• Note repeated sub-expressions
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Fitting a Parabola
//// Returns the distance between b and the abscissa for the
// fitted minimum using parabolic interpolation
double parabola_step (double a, double fa, 

double b, double fb, double c, double fc)
{
// Quantities for placing minimum of fitted parabola
double p = (b - a) * (fb - fc);
double q = (b - c) * (fb - fa);
d bl ( ) * ( ) *double x = (b - c) * q - (b - a) * p;
double y = 2.0 * (p - q);

// Check that q is not zero
if (f b ( ) )if (fabs(y) < ZEPS)

return golden_step (a, b, c);
else

return x / y;
}}



Caution:Caution:
Using Fitted Minimum

Fitted minimum could overlap with one of 
original points
• Could produce degenerate case

Ensure that each new point is distinct from 
previously examined pointsp y p



Avoiding Degenerate Steps
double adjust_step(double a, double b, double c, double step, double e)

{
double min_step = fabs(e * b) + ZEPS;

if (fabs(step) < min_step);
return step > 0 ? min_step : -min_step;

// If the step ends up to close to previous points, 
// f ld i// return zero to force a golden ratio step ...
if (fabs(b + step - a) <= e || fabs(b + step - c) <= e)

return 0.0;

return step;
}



Generating New Points

Use parabolic interpolation by default

Check whether improvement is slow
• Step sizes are not decreasing rapidly enoughStep sizes are not decreasing rapidly enough

Switch to golden section if function isSwitch to golden section if function is 
uncooperative



Calculating Step Size
double calculate_step(double a, double fa, 

double b, double fb, double c, double fc, 
double last_step, double e)

{{
double step = parabola_step(a, fa, b, fb, c, fc);
step = adjust_step(a, b, c, step, e);

if (f b ( t ) > f b (0 5 * l t t ) || t 0 0)if (fabs(step) > fabs(0.5 * last_step) || step == 0.0)
step = golden_step(a, b, c);

return step;p
}



Overall

The main function simply has to:
• Generate new points using building blocks

• Update the triplet bracketing the minimum

• Check for convergence



Overall Minimization Routine
double find_minimum(double (*func)(double), double a, double b, double c, _

double e)
{
double fa = (*func)(a), fb = (*func)(b), fc = (*func)(c);
double step1 = (c - a) * 0.5, step2 = (c - a) * 0.5;

while ( fabs(c - a) > fabs(b * e) + ZEPS)
{
double step = calculate_step (a, fa, b, fb, c, fc, step2, e);
double x = b + step; double fx = (*func)(x);

if (fx < fb) 
{ 
if (x > b) { a = b; fa = fb; } else { c = b; fc = fb; }
b = x; fb = fx; 
}}

else 
if (x < b) { a = x; fa = fx; } else { c = x; fc = fx; }

step2 = step1; step1 = step;
}}

return b;
}



Important Characteristics

Parabolic interpolation often convergences faster
• The preferred algorithm

Golden search provides performance guarantee
• A fall-back for uncooperative functionsp

Switch algorithms when convergence slow
• Allow parabolic interpolation one poor choice

Avoid testing points that are too closeAvoid testing points that are too close



Brent's Strategy

Most popular strategy for minimization 
without derivatives
• Part of Richard Brent's PhD thesis in 1971

Similar to the one we described:
• Inverse Quadratic Interpolation, where possibleInverse Quadratic Interpolation, where possible
• Golden Section Search, fall-back



Brent's Strategy
Track 6 pointsTrack 6 points
• Not all distinct
• The bracket boundaries (a, b)The bracket boundaries (a, b)
• The current minimum (x)
• The second and third smallest values (w, v)
• The new point to be examined (u)

Parabolic interpolation uses (x w v) to proposeParabolic interpolation uses (x, w, v) to propose 
new value for u
• Additional care required to ensure u falls between a and bq



Recommended Reading

Numerical Recipes in C (or C++)
• Press, Teukolsky, Vetterling, Flannery
• Ch 10 0 10 2• Chapters 10.0 – 10.2

Excellent resource for scientific computingExcellent resource for scientific computing

O li tOnline at
• http://www.numerical-recipes.com/
• http://www library cornell edu/nr/• http://www.library.cornell.edu/nr/



Next topic:Next topic:
Multi-dimensional Optimization

Simplex method of Nelder and Mead

The Expectation Maximization algorithm

Monte-Carlo Methods
• M t li l ith• Metropolis algorithm
• Gibbs sampling



A Multi-Dimensional Problem:A Multi Dimensional Problem:
Mixture Distributions

Interesting application for multidimensional 
optimization

Related to many useful statistical problemsRelated to many useful statistical problems
• Clustering
• ClassificationClassification



Classification

Given elements with 
known groupings …



Classification

Given elements with 
known groupings …

Assign grouping for a 
new element



Clustering

Starting with points 
with unknown sources 
…



Clustering

Starting with points 
with unknown sources

Find appropriate 
grouping scheme



A simple distribution

For many continuous measurements, 
normal distribution is a good starting 
point

Parameters are easy to estimate from 
the samplep



Heights for 4,102 Individuals
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Normal Density

If the data is normally distributed, the density 
function for each component is
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C Code:C Code:
Normal Density
#include <math.h>

double square(double x)q ( )
{ return x * x; }

double dnorm(double x double mu double sigma)double dnorm(double x, double mu, double sigma)
{
return 1.0 / (sigma * sqrt(M_PI * 2.0)) *

exp (-0.5 * square((x - mu)/sigma));
}



A Simple Mixture Distribution

Observations are univariate
• Single measurement

Each component has a normal 
distribution



Two Underlying Distributions
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A General Mixture Distribution
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x is the observation
π are the mixture proportions
f is the probability density function
φ are parameters for each componentφ p p
η are parameters shared among components
k is the number of componentsp



C Code:C Code:
Mixture Distribution
double dmix(double x,double dmix(double x, 

int k, 
double probs[], 
double means[], 
double sigmas[])

{
int i;
double density = 0.0;

for (i = 0; i < k; i++)
d it + b [i] *density += probs[i] *

dnorm(x, means[i], sigmas[i]);

return density;return density;
}



Maximum Likelihood Approach

Find the parameters that maximize the 
likelihood for the entire sample
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C Code:C Code:
Overall Log-Likelihood

double mixLLK(int n, double x[], 
int k, double probs[], double means[], 
double sigmas[])

{{
int i;
double llk = 0.0;

for (int i = 0; i < n; i++)
llk += log(dmix(x[i], k, probs, means, sigmas));

return llk;
}



Missing Data Formulation

For each observation i, we are missing 
some specific (and interesting) information

The group membership indicator ZiThe group membership indicator Zi

• If this were observed, the entire problem couldIf this were observed, the entire problem could 
become quite simple



Classification Probabilities
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Results from the application of Bayes' theorempp y

Probabilistic interpretation…p



C Code:C Code:
Classification Probabilities
double classprob(int j, double x, int k,

double probs[], double means[],     
double sigmas[])

{
double p = probs[j] * 

dnorm(x, means[j], sigmas[j]);

return p / dmix(x, k, probs, means, sigmas);
}

Calculates the probability that observation x belongs to 
component jp j



A related problem

Estimating the number of components
• Can be interesting in itself!

The maximum likelihood approach 
requires a preset number of componentsrequires a preset number of components

P li d lik lih d hPenalized likelihood approaches 
required…



Example: Galaxy Speeds

Data of Postman et al. (1986) in the Astronomical Journal.



Fitting 3 ComponentsFitting 3 Components
(Stephens, 1997)



Fitting 6 ComponentsFitting 6 Components
(Stephens, 1997)



Today …

An introduction to mixture distributions

Basic routines for modeling these data

In the upcoming lectures, we will 
examine how to fit these mixturesexamine how to fit these mixtures 
appropriately to data



Additional Reading

If you need a refresher on mixture 
distributions…
• Bayesian Methods for Mixture Distributions

M. Stephens (1997)
http // stat ashington ed /stephens/http://www.stat.washington.edu/stephens/

• Chapter 1 recommended• Chapter 1 recommended


