Simulated Annealing

Biostatistics 615/815
Lecture 18
So far ...

- "Greedy" optimization methods
 - Can get trapped at local minima
 - Outcome might depend on starting point

- Examples:
 - Golden Search
 - Nelder-Mead Simplex Optimization
 - E-M Algorithm
Today ...

- Simulated Annealing
- Markov-Chain Monte-Carlo method
- Designed to search for global minimum among many local minima
The Problem

- Most minimization strategies find the nearest local minimum

- Standard strategy
 - Generate trial point based on current estimates
 - Evaluate function at proposed location
 - Accept new value if it improves solution
The Solution

- We need a strategy to find other minima.

- This means, we must sometimes select new points that do not improve the solution.

- How?
Annealing

- One manner in which crystals are formed

- Gradual cooling of liquid ...
 - At high temperatures, molecules move freely
 - At low temperatures, molecules are "stuck"

- If cooling is slow
 - Low energy, organized crystal lattice formed
Simulated Annealing

- Analogy with thermodynamics
- Incorporate a temperature parameter into the minimization procedure
 - At high temperatures, explore parameter space
 - At lower temperatures, restrict exploration
Markov Chain

- The Markovian property
 \[
 \Pr(Z_n = i_n \mid Z_{n-1} = i_{n-1}, \ldots, Z_0 = i_0) = \Pr(Z_n = i_n \mid Z_{n-1} = i_{n-1})
 \]

- Transition probability
 \[
 Q_{ij} = \Pr(Z_n = j \mid Z_{n-1} = i)
 \]

- \(n\)-step transition
 \[
 Q_{ij}^{(n)} = \Pr(Z_n = j \mid Z_0 = i) = \sum_{i_1} \cdots \sum_{i_{n-1}} p_{i_1} \cdots p_{i_{n-1}j}
 \]
 (all possible \(n\)-step paths \(i \rightarrow j\))
Markov Chain (In Practice)

- Start with some state \((Z_n=i)\)
 - A set of mixture parameters

- Propose a change \((Z_{n+1}=j)\)
 - Edit mixture parameters in some way

- Decide whether to accept change \((Q_{ij})\)
 - Decision is based on relative probabilities of two outcomes
Simulated Annealing Strategy

- Consider decreasing series of temperatures

- For each temperature, iterate these steps:
 - Propose an update and evaluate function
 - Accept updates that improve solution
 - Accept some updates that don't improve solution
 - Acceptance probability depends on “temperature” parameter

- If cooling is sufficiently slow, the global minimum will be reached
Example Application

The traveling salesman problem
- Salesman must visit every city in a set
- Given distances between pairs of cities
- Find the shortest route through the set

No practical deterministic algorithms for finding optimal solution are known...
- ... simulated annealing and other stochastic methods can do quite well
A good scheme should be able to:
 • Connect any two possible paths
 • Propose improvements to good solutions

Some possible update schemes:
 • Swap a pair of cities in current path
 • Invert a segment in current path

What do you think of these?
How simulated annealing proceeds ...

Fig. 9. Results at four temperatures for a clustered 400-city traveling salesman problem. The points are uniformly distributed in nine regions. (a) $T = 1.2$, $\alpha = 2.0567$; (b) $T = 0.8$, $\alpha = 1.515$; (c) $T = 0.4$, $\alpha = 1.055$; (d) $T = 0.0$, $\alpha = 0.7839$.
A little more detail

- Metropolis (1953), Hastings (1970)
 - Define a set of conditions that, if met, ensure the random walk will sample from probability distribution at equilibrium
 - In theory
 - Recommendations apply to how changes are proposed and accepted
Accepting an Update

- The *Metropolis criterion*

- Change from E_0 to E with probability

$$\min\left(1, \exp\left\{-\frac{(E - E_0)}{T}\right\}\right)$$

- Given sufficient time, leads to equilibrium state
Evaluating Proposals in Simulated Annealing

```c
int accept_proposal(double current, double proposal, double temperature)
{
    double prob;

    if (proposal < current)
        return 1;

    if (temperature == 0.0)
        return 0;

    prob = exp(-(proposal - current) / temperature);

    return rand_prob() < prob;
}
```
Key Requirements

- Irreducibility: all states must communicate
 - Some integer n exists where $Q^{(n)}_{ij} > 0$

- Aperiodicity: to further ensure
 - Some integer n exists where $Q^{(n)}_{ij} > 0$ for all i, j

- These two conditions guarantee existence of a unique equilibrium distribution
Equilibrium Distribution

- Limiting matrix of $Q^{(n)}$ should have identical rows π
 - Starting point does not affect results

- Equilibrium distribution π satisfies

\[
\begin{pmatrix}
\pi \\
\vdots \\
\pi
\end{pmatrix} = \lim_{n \to \infty} P^{n+1} = \left(\lim_{n \to \infty} P^n \right) P = \begin{pmatrix}
\pi \\
\vdots \\
\pi
\end{pmatrix} P
\]
Equilibrium Distribution (Simulated Annealing)

- Probability of state with energy k is

$$P(E = k) \propto \exp\left(-\frac{k}{T}\right)$$

- At low T, probability is concentrated in low energy states
Simulated Annealing Recipe

1. Select starting temperature and initial parameter values

2. Randomly select a new point in the neighborhood of the original

3. Compare the two points using the Metropolis criterion
Simulated Annealing Recipe

4. Repeat steps 2 and 3 until system reaches equilibrium state…
 - In practice, repeat the process N times for large N

5. Decrease temperature and repeat the above steps, stop when system reaches frozen state
Practical Issues

- The maximum temperature
- Scheme for decreasing temperature
- Strategy for proposing updates
Selecting a Nearby Point

- Suggestion of Brooks and Morgan (1995) works well for our problem
 - Select a component to update
 - Sample from within plausible range

- Many other alternatives
 - The authors of *Numerical Recipes* use a variant of the Nelder-Mead method
C Code: Simple Sampling Functions

// Assume that function Random() generates
// random numbers between 0.0 and 1.0
// Examples from lecture 14 are suitable

// Random numbers within arbitrary range
double randu(double min, double max)
{
 return Random() * (max - min) + min;
}
Updating Means and Variances

- Select component to update at random
- Sample a new mean (or variance) within plausible range for parameter
- Decide whether to accept proposal
C Code:
Updating Means

double sa_means(int dim,
 double * probs, double * means, double * sigmas,
 double llk, double temperature, double min, double max)
{
 int c = Random() * dim;
 double proposal, old = means[c];

 means[c] = randu(min, max);
 proposal = -mixLLK(n, data, dim, probs, means, sigmas);

 if (accept_proposal(llk, proposal, temperature))
 return proposal;

 means[c] = old;
 return llk;
}
C Code: Updating Standard Deviation

```c
double sa_sigmas(int dim,
     double * probs, double * means, double * sigmas,
     double llk, double temperature, double min, double max)
{
    int c = Random() * dim;
    double proposal, old = sigmas[c];

    sigmas[c] = randu(min, max);
    proposal = -mixLLK(n, data, dim, probs, means, sigmas);

    if (accept_proposal(llk, proposal, temperature))
       return proposal;

    sigmas[c] = old;
    return llk;
}
```
Updating Mixture Proportions

- Mixture proportions must sum to 1.0
- When updating one proportion, must take others into account
- Select a component at random
 - Increase or decrease probability by ~20%
 - Rescale all proportions so they sum to 1.0
C Code:
Vector Utility Functions

double * duplicate_vector(double * v, int dim)
{
 int i;
 double * dup = alloc_vector(dim);
 for (i = 0; i < dim; i++)
 dup[i] = v[i];
 return dup;
}

void copy_vector(double * dest, double * source, int dim)
{
 for (i = 0; i < dim; i++)
 dest[i] = source[i];
}
C Code: Changing Mixture Proportions

double sa_probs(int dim, double * probs, double * means,
 double * sigmas, double llk, double temperature)
{
 int i, c = Random() * dim;
 double proposal, * save_probs = duplicate_vector(probs, dim);

 probs[c] *= randu(0.8, 1.25);
 adjust_probs(probs, dim);

 proposal = -mixLLK(n, data, dim, probs, means, sigmas);
 if (accept_proposal(llk, proposal, temperature))
 llk = proposal;
 else
 copy_vector(probs, save_probs, dim);

 free_vector(save_probs, dim);
 return llk;
}
C Code: Adjusting Probabilities

- The following function ensures probabilities always sum to 1.0

```c
void adjust_probs(double * probs, int dim)
{
    int i;
    double sum = 0.0;

    for (i = 0; i < dim; i++)
        sum += probs[i];

    for (i = 0; i < dim; i++)
        probs[i] /= sum;
}
```
Simulated Annealing Procedure

- Cycle through temperatures
- At each temperature, evaluate proposed changes to mean, variance and mixing proportions
C Code: Simulated Annealing

```c
double sa(int k, double * probs, double * means, double * sigmas, double eps) {
    double llk = -mixLLK(n, data, k, probs, means, sigmas);
    double temperature = MAX_TEMP; int choice, N;

double lo = min(data, n), hi = max(data, n);
double stdev = stdev(data, n), sdhi = 2.0 * stdev, sdlo = 0.1 * stdev;

    while (temperature > eps) {
        for (N = 0; N < 1000; N++)
            switch (choice = Random() * 3) {
                case 0 :
                    llk = sa_probs(k, probs, means, sigmas, llk, temperature);
                    break;
                case 1 :
                    llk = sa_means(k, probs, means, sigmas, llk, temperature, lo, hi);
                    break;
                case 2 :
                    llk = sa_sigmas(k, probs, means, sigmas, llk, temperature, sdlo, sdhi);
            }
        temperature *= 0.90;
    }
    return llk;
}
```
Example Application
Old Faithful Eruptions (n = 272)
E-M Algorithm: A Mixture of Three Normals

- Fit 8 parameters
 - 2 proportions, 3 means, 3 variances

- Required about ~150 evaluations
 - Found log-likelihood of ~267.89 in 42/50 runs
 - Found log-likelihood of ~263.91 in 7/50 runs

- The best solutions …
 - Components contributing .160, 0.195 and 0.644
 - Component means are 1.856, 2.182 and 4.289
 - Variances are 0.00766, 0.0709 and 0.172
 - Maximum log-likelihood = -263.91
Three Components

Old Faithful Eruptions

Fitted Distribution
Three Components

Old Faithful Eruptions

Fitted Density

Duration (mins)

Frequency

Density

Duration (mins)
Simulated Annealing: Mixture of Three Normals

- Fit 8 parameters
 - 2 proportions, 3 means, 3 variances

- Required about ~100,000 evaluations
 - Found log-likelihood of ~267.89 in 30/50 runs
 - Found log-likelihood of ~263.91 in 20/50 runs
 - With slower cooling and 500,000 evaluations, minimum found in 32/50 cases

- 100,000 evaluations seems like a lot…
 - However, consider that even a 5 point grid search along 8 dimensions would require ~400,000 evaluations!
Convergence for Simulated Annealing

- Convergence plot indicating the evolution of means and likelihood over thousands of iterations.
Convergence for Simulated Annealing

LogLikelihood

0 25 50 75 100
Thousands

-500 -400 -300 -200
LogLikelihood

Iteration

0 25 50 75 100
Thousands
Convergence for Simulated Annealing
Importance of Annealing Step

- Evaluated a greedy algorithm

- Generated 100,000 updates using the same scheme as for simulated annealing

 However, changes leading to decreases in likelihood were never accepted

- Led to a minima in only 4/50 cases.
E-M Algorithm:
A Mixture of Four Normals

- Fit 11 parameters
 - 3 proportions, 4 means, 4 variances

- Required about ~300 evaluations
 - Found log-likelihood of ~267.89 in 1/50 runs
 - Found log-likelihood of ~263.91 in 2/50 runs
 - Found log-likelihood of ~257.46 in 47/50 runs

- "Appears" more reliable than with 3 components
Simulated Annealing: A Mixture of Four Normals

- Fit 11 parameters
 - 3 proportions, 4 means, 4 variances

- Required about ~100,000 evaluations
 - Found log-likelihood of ~257.46 in 50/50 runs

- Again, a grid-search in 11 dimensions would only allow ~4-5 points per dimension and find a worse solution
Four Components

Old Faithful Eruptions

![Histogram of Duration (mins)](image)

- Frequency
- Duration (mins)
- 1 2 3 4 5 6

![Density Graph](image)

- Density
- Duration
- 0.0 0.2 0.4 0.6 0.8 1.0
- 1 2 3 4 5 6
Today …

- Simulated Annealing
- Markov-Chain Monte-Carlo method
- Searching for global minimum among local minima
Next Lecture

- More detailed discussion of
 - MCMC methods
 - Simulated Annealing and Probability Distributions

- Introduction to Gibbs sampling
References

I/O Notes for Problem Set 7

- To read data, use "stdio.h" library

- Functions for opening and closing files
 - `FILE * fopen(char * name, char * mode);`
 - `void fclose(FILE * f);`

- Functions for reading and writing to files
 - I recommend `fprintf` and `fscanf`
 - Analogous to `printf` and `scanf`
fopen() function

- Typical usage:

```c
FILE * f = fopen("file.txt", "rt");
if (f == NULL)
{
    printf("Error opening file\n");
    exit(1);
}

/* Rest of code follows */
```

- File mode combines to characters:
 - "w" for writing and "r" for reading
 - "t" for text and "b" for binary
fclose()

- Makes a file available to other programs

 `fclose(f);`

- To return to the beginning of a file use:

 `rewind(f);`

- To check whether the end-of-file has been reached:

 `feof(f);`
Writing to a File

- Writing a an integer and a double

```c
int i = 2;
double x = 2.11;

fprintf(f, "My secret numbers are " "%d and %f\n", i, x);
```

- As usual, use %d for integers, %f for doubles, %s for strings
Reading from a File

- Reading an integer and a double

```c
int i;
double x;
scanf(f, "%d %lf\n", &i, &x);
```

- As usual, use `%d` for integers, `%f` for floats, `%lf` for doubles, `%s` for strings

- Writing `%*t` [where `t` is one of the type characters above] reads a value and discards it without storing.

- Returns the number of items transferred successfully
Counting Items in File

FILE * f = fopen(filename, "rt");
double item;
int items = 0;

// Count the number of items in file

// First skip header
fscanf(f, "%*s ");

// Read and count floating point values
// until file is exhausted
while (!feof(f) && fscanf(f, "%lf ", &item) == 1)
 items++;
Reading Items from a file

// Return to the beginning of file
rewind(f);

// Skip header again
fscanf(f, "%*s ");

// Allocate enough memory
data = alloc_vector(n = items);

// Read each item into appropriate location
for (i = 0; i < items; i++)
 fscanf(f, "%lf ", &data[i]);

// Done with this file!
fclose(f);