Course Objective

- Provide students with a grounding for conducting statistical computing projects.

- Applications and examples will be in C and in R.

- But the focus is on an algorithmic way of thinking!
Part I: Key Algorithms

- Connectivity
- Sorting
- Searching
- Hashing
- Key data structures
Part II: Statistical Methods

- Basic data analysis in R
- Markov-Chain Monte-Carlo
 - Metropolis-Hastings
 - Gibbs Sampling
- Function Optimization
 - Naïve algorithms
 - Newton’s Methods
 - E-M algorithm
Textbooks

- Algorithms in C

- Numerical Analysis for Statisticians
 - Kenneth Lange (1999)
Assessment

- 12 Weekly Assignments
 - About 60% of the final mark

- 2 Exams
 - About 40% of the final mark
Office Hours

- Tuesdays
 - 10:00 – 11:00 am

- Room M4132
 School of Public Health II
Algorithms

- Methods for solving problems that are well suited to computer implementation
- Good algorithms can often make impossible problems become simple
Algorithms are ideas ...

- Focus on approach to a problem
- Typically, the actual implementation could be take many different forms
 - Computer languages
 - Pen and paper
Example: DNA Sequence Matches

- When the Human Genome Project started, searching through the entire genome sequence seemed impractical...

- For example,
 - Searching for ~150 sequences of about 500bp each in ~3,000,000,000 bases of sequence would take ~3 hours with the BLAST or FASTA3 algorithms
Example:
DNA Sequence Matches

• Mullikin and colleagues (2001) described an improved algorithm, using hash tables, that could do this in < 2 seconds

• Reference:
 • Ning, Cox and Mullikin (2001) *Genome Research* **11**:1725-1729
Today’s Lecture

- Introduce a “Connectivity problem” and some alternative solutions

- If you haven’t done much programming before, don’t worry too much about implementation details.

 - We’ll fill these in later lectures.
The Connectivity Problem

- N objects
 - Integer names 0 .. N – 1

- M connections between pairs of objects
 - Each connection identifies a pair \((p, q)\)

- Possible questions:
 - Are all objects connected?
 - Are some connections redundant?
Possible applications

- Is a direct connection between two computers required in a network?
 - Or can we use some existing connections instead?

- Are two individuals part of the same extended family in a genetic study?
Are the two points connected?
Specific Question

- Can we identify redundant connections?
 - A redundant connection would link two points that are already connected

- For N objects there can be no more than N-1 non-redundant connections
 - Corresponds to all points being connected
A simple example ...

- Connections
 - 3-4
 - 4-9
 - 8-0
 - 2-3
 - 5-6
 - 2-9
 - 4-8
 - 0-2
A simple example ...

- Connections
 - 3-4 √
 - 4-9 √
 - 8-0 √
 - 2-3 √
 - 5-6 √
 - 2-9 Redundant: 2-3 ; 3-4 ; 4-9
 - 4-8 √
 - 0-2 Redundant: 0-8; 8-4; 4-3; 3-2
Specific Tasks

As we proceed through list of connections, conduct two tasks:

- Decide if each connection is new.
- Incorporate information about new connections.
The Fundamental Operations

- The *Find* operation
 - Identify the set containing a particular item or items.

- The *Union* operation
 - Replace the sets containing two groups of objects by their union
The First Step

- Developing a solution that works
 - Easy to verify correctness
 - May not be most efficient
 - Should be simple

- Useful as check of “better” solutions…
Arrays of Integers

- Simple data structure
 - Analogous to a vector

- The notation $a[i]$ refers to the i^{th} integer in the array
 - We’ll typically pre-specify the total number of integers
Quick Find Algorithm

- **Data**
 - Array of N integers
 - Objects p and q connected iff $a[p] = a[q]$

- **Setup**
 - Initialize $a[i] = i$, for $0 \leq i < N$

- **For each pair**
 - If $a[p] = a[q]$ objects are connected (FIND)
 - Move all entries in set $a[p]$ to set $a[q]$ (UNION)
A Simple C Implementation

#include N 1000

int main()
{
 int i, p, q, set, a[N]; // Variable declarations

 for (i = 0; i < N; i++)
 a[i] = i; // Data initialization

 while (scanf(" %d %d", &p, &q) == 2) // Loop through connections
 {
 if (a[p] == a[q]) continue; // FIND

 set = a[p]; // UNION

 for (i = 0; i < N; i++)
 if (a[i] == set)
 a[i] = a[q];

 printf("%d %d is a new connection\n", p, q);
 }

 return 0;
}
Array as connections are added:

- 3-4
- 4-9
- 8-0
- 2-3
- 2-9 * Redundant *

Pictorial Representation
How efficient is Quick Find?

- If there N objects and M connections*, the Quick Find algorithm requires on the order of MN operations.

- Not feasible for very large numbers of objects...

* In this case only non-redundant connections actually count.
Quick-Union Algorithm I

- Complementary to Quick Find
- More complex data organization
 - Each object points to “parent” object in the same set
Quick-Union Algorithm II

- For each pair
 - Follow pointers until we reach object that points to itself
 - If \(a[p] \) and \(a[q] \) eventually lead to the same object, we are in the same set (FIND)
 - Otherwise, link the object to which \(a[p] \) leads to the object which \(a[q] \) leads (UNION)
C implementation

// Loop through connections on input
while (scanf(" %d %d", &p, &q) == 2)
{
 // Check that input is within bounds
 if (p < 0 || p >= N || q < 0 || q >= N) continue;

 // Find
 for (i = a[p]; i != a[i]; i = a[i]) ;
 for (j = a[q]; j != a[j]; j = a[j]) ;
 if (i == j) continue;

 // Union
 a[i] = j;

 printf("%d %d is a new connection\n", p, q);
}
Pictorial Representation

Array as connections are added:

- 3-4
- 4-9
- 8-0
- 2-3
- 2-9 * Redundant
How efficient is Quick Union?

- Quick Union is typically faster than Quick Find.
- However, the data can conspire to make things difficult:
 - If objects are paired 1-2; 2-3; 3-4; 4-5; … we’ll build long chains which slow down FIND operations
- In the worst case, we can still need about MN operations
Weighted Quick Union

- A smarter version of Quick Union, that avoids long chains

- Keep track of the number of elements in each set (using a separate array)

- Link smaller set to larger set
 - Union increases length of chains in smaller set by 1
C Implementation

// Initialize weights
for (i = 0; i < N; i++)
 weight[i] = 1;

// Loop through connections on input
while (scanf(" %d %d", &p, &q) == 2)
{
 // Check that input is within bounds
 if (p < 0 || p >= N || q < 0 || q >= N) continue;

 // Find
 for (i = a[p]; i != a[i]; i = a[i]) ;
 for (j = a[q]; j != a[j]; j = a[j]) ;
 if (i == j) continue;

 // Union
 if (weight[i] < weight[j])
 {
 a[i] = j; weight[j] += weight[i];
 }
 else
 a[j] = i; weight[i] += weight[j];

 printf("%d %d is a new connection\n", p, q);
}
Pictorial Representation

- Array as connections are added:
 - 3-4
 - 4-9
 - 8-0
 - 2-3
 - 2-9 * Redundant
Efficiency of Weighted Quick Union

- Guarantees that pointer chains are no more than \(\log_2 N \) elements long
- Overall, requires about \(M \log_2 N \) operations
- Suitable for very large data sets with millions of objects and connections
Pictorial Comparison

<table>
<thead>
<tr>
<th>Quick Find</th>
<th>Quick Union</th>
<th>Weighted</th>
</tr>
</thead>
</table>

0 1 2 4 5 6 7 8 9	0 1 2 3 6 7 8 9	0 1 2 3 6 7 8 9
0 1 2 9 3 4 6 7 8	0 1 2 3 4 5 6 7 8	0 1 2 3 4 5 6 7 8
1 2 9 5 6 7 0 3 4	1 2 9 5 6 7 0 3 4	1 2 3 5 6 7 8 9 0
1 9 3 5 6 7 0 8 4	1 9 5 6 7 8 3 0 4	1 2 3 5 6 7 8 9 0
1 9 3 5 6 7 0 8 4	1 9 5 6 7 8 3 0 4	1 2 3 5 6 7 8 9 0
1 9 3 5 6 7 0 8 4	1 9 5 6 7 8 3 0 4	1 2 3 5 6 7 8 9 0
1 9 3 5 6 7 0 8 4	1 9 5 6 7 8 3 0 4	1 2 3 5 6 7 8 9 0
1 9 3 5 6 7 0 8 4	1 9 5 6 7 8 3 0 4	1 2 3 5 6 7 8 9 0
1 9 3 5 6 7 0 8 4	1 9 5 6 7 8 3 0 4	1 2 3 5 6 7 8 9 0
1 9 3 5 6 7 0 8 4	1 9 5 6 7 8 3 0 4	1 2 3 5 6 7 8 9 0
1 9 3 5 6 7 0 8 4	1 9 5 6 7 8 3 0 4	1 2 3 5 6 7 8 9 0
Empirical Timings in Seconds

<table>
<thead>
<tr>
<th>Nodes (Connections)</th>
<th>Quick Find</th>
<th>Quick Union</th>
<th>Weighted Quick Union</th>
</tr>
</thead>
<tbody>
<tr>
<td>50,000 (50,000)</td>
<td>6</td>
<td>1</td>
<td><1</td>
</tr>
<tr>
<td>100,000 (100,000)</td>
<td>12</td>
<td>4</td>
<td><1</td>
</tr>
<tr>
<td>200,000 (200,000)</td>
<td>25</td>
<td>15</td>
<td><1</td>
</tr>
</tbody>
</table>
Summary

- Considered 3 alternative solutions to the “connectivity problem”
 - Are any connections in a set redundant?
 - Are all objects in a set connected?

- Compared some of the computational cost for the different methods
Reading Material

- Read Chapter 1 of Sedgewick