Last Lecture

- Recursive functions
- The stack
- Dynamic programming
 - Bottom-up
 - Top-down
Today ...

- Dynamic programming
 - Examples
- Accessing global variables in R
- Memory allocation in C
Bottom-Up Dynamic Programming

- Evaluate function starting with smallest possible argument value
 - Stepping through possible values, gradually increase argument value

- Store all computed values in an array

- As larger arguments evaluated, precomputed values for smaller arguments can be retrieved
Fibonacci Numbers in C

```c
int Fibonacci(int i)
{
    int a[LARGE_NUMBER], j;

    a[0] = 0;
    a[1] = 1;

    for (j = 2; j <= i; j++)
        a[j] = a[j - 1] + a[j - 2];

    return a[i];
}
```
Implementing Function in R

- Pitfalls
 - Arrays start with element 1

- Conveniences
 - Arrays size does not have to be fixed
Fibonacci Numbers

Fibonacci <- function(i)
{
 if (i < 2)
 return(i)

 i <- i + 1
 a <- rep(0, i)

 a[1] <- 0;
 a[2] <- 1;

 for (j in seq(3,i))
 a[j] <- a[j - 1] + a[j - 2]

 return(a[i])
}
Creating and Sizing Arrays in R

- `length(v)`
 - Number of elements in array
- `c(…)`
 - Concatenates a set of variables or vectors
- `rep(x, n)`
 - Repeats a value for specified number of times
- `seq(start, stop)`
 - Generates a sequence of numbers
In C:

Arbitrary Arrays are Possible...

- Program must explicitly request memory
- Program should explicitly free memory
- Memory management provided by `<stdlib.h>`

- Pointers
 - Store a memory address
 - `int *`, `double *`, `char *`
Memory Regions for C Programs

- **Static Data**
 - Variables with one instance per program

- **The Stack**
 - Local variables, with one instance per function call

- **The Heap**
 - Memory allocated at runtime using malloc()
Pointers in C

- Declared with data type followed by *

- Can be created by...
 - Calling malloc()
 - Retrieving address of existing variable (\&var)

- Accessed using ...
 - pointer to retrieve memory address
 - *pointer to retrieve first element
 - pointer[i] to retrieve ith element
Basic Memory Management

- `void * malloc(size_t bytes)`
 - Allocates a block of memory
 - Required amount specified in bytes
 - Pointer can be converted to appropriate type

- `void free(void * pointer)`
 - Releases memory

- `sizeof(type)`
 - Returns size of data type in bytes
int Fibonacci(int i)
{
 int * a, j, result;

 if (i < 2) return i;

 a = malloc(sizeof(int) * (i + 1));

 a[0] = 0; a[1] = 1;
 for (j = 2; j <= i; j++) a[j] = a[j - 1] + a[j - 2];

 result = a[i];
 free(a);

 return result;
}
Things to Remember

- Array indexing
 - 0 .. N – 1
 - 1 .. N

- Memory allocation and pointers
 - For C users!
Top-Down Dynamic Programming

- Save each computed value as final action of recursive function
- Check if pre-computed value exists as the first action
Fibonacci Numbers

```c
int Fibonacci(int i)
{
    // Simple cases first
    if (saveF[i] > 0)
        return saveF[i];

    if (i <= 1)
        return i;

    // Recursion
    saveF[i] = Fibonacci(i - 1) + Fibonacci(i - 2);
    return saveF[i];
}
```
Implementing Function in R

- Within R functions, all assignments change only local variable by default
- Must use `<<-` operator to change global variable
The `<<-` operator in R

- Unlike `<-` does not create a local variable.
- Searches for variable in enclosing function or global environment.
Fibonacci <- function(i)
{
 # Simple cases first
 if (i <= 1)
 return (i)

 if (saveF[i] > 0)
 return (saveF[i])

 # Recursion
 saveF[i] <<- Fibonacci(i - 1) + Fibonacci(i - 2)
 return (saveF[i])
}
More on Recursive Functions

- The Binomial Distribution
- The Poisson-Binomial Distribution
- Example of an unstable recursion
Binomial Coefficients

The number of subsets with k elements from a set of size N

$$\binom{N}{k} = \binom{N-1}{k} + \binom{N-1}{k-1}$$

$$\binom{N}{0} = \binom{N}{N} = 1$$
Implementation in R

Choose <- function(N, k)
{
 M <- matrix(nrow = N, ncol = N + 1)

 for (i in 1:N)
 {
 M[i,1] <- M[i, i + 1] <- 1

 if (i > 1)
 for (j in 2:i)
 M[i,j] <- M[i - 1, j - 1] + M[i - 1, j];

 }

 return(M[N,k + 1])
}
Implementation in R - Notes

- Results are stored in matrix()

- Indices start at 1
 - Intermediate results stored in M[N][k+1] to avoid element zero

- Sequences in loops can go up or down
 - Writing 2:n could have unintended consequences
 - If statement checks n before executing loop
Implementation in C

```c
int Choose(int N, int k)
{
    int i, j, M[MAX_N][MAX_N];

    for (i = 1; i <= N; i++)
    {
        M[i][0] = M[i][i] = 1;

        for (j = 1; j < i; j++)
            M[i][j] = M[i - 1][j - 1] + M[i - 1][j];
    }

    return M[N][k];
}
```
Implementation in C - Notes

- Intermediate results in 2D array

- However...
 - Each row depends only on previous row
 - Each column depends only on two columns

- Instead of storing all results in matrix...
- ... keep a vector with results for row N - 1
Implementation in C

```c
int Choose(int N, int k)
{
    int i, j, M[MAX_N];

    for (i = 1; i <= N; i++)
    {
        M[0] = M[i] = 1;

        for (j = i; j > 0; j--)
        {
        }
    }

    return M[k];
}
```
Further refinement is possible
 • E.g. Memory allocation with malloc()

Calculations can be further reduced
 • Top-down programming is more effective.
 • (Homework question!)
Poisson-Binomial Distribution

- X_1, X_2, \ldots, X_n are Bernoulli random variables
- Probability of success is p_k for X_k
- $S=\sum_k X_k$ has Poisson-Binomial Distribution
Some Possibilities

- If $p_k = p$ then $\sum_k X_k$ follows Binomial distribution with n trials and probability of success p

- When $\sum_k p_k$ is large, $\sum_k X_k$ can be approximated by a Poisson distribution

- In other cases, we may need to evaluate distribution exactly…
 - $p_n(i) = Pr(S_n = i)$
Some Possibilities

- If $p_k = p$ then $\sum_k X_k$ follows Binomial distribution with n trials and probability of success p

- When $\sum_k p_k$ is large, $\sum_k X_k$ can be approximated by a Poisson distribution

- In other cases, we may need to evaluate distribution exactly…
 - $p_n(i) = \Pr(S_n = i)$
Recursive Formulation

\[P_1(0) = 1 - p_1 \]
\[P_1(1) = p_1 \]

\[P_j(0) = (1 - p_j)P_{j-1}(0) \]
\[P_j(j) = p_jP_{j-1}(j-1) \]
\[P_j(i) = p_jP_{j-1}(i-1) + (1 - p_j)P_{j-1}(j-1) \]
An unstable recursion ...

- Some floating point calculations are numerically unstable...

- A well known example involves the “Golden Ratio”...

\[\phi = \frac{\sqrt{5} - 1}{2} = 0.61803398 \]

\[\phi^n = \phi^{n-2} - \phi^{n-1} \]
Calculating Powers of ϕ

- Two possibilities

\[
\phi^n = \phi^{n-1} \phi
\]

\[
\phi^n = \phi^{n-2} - \phi^{n-1}
\]
Results Using Product Formula
Results Using Difference Formula
Relative Error on Log Scale

\[
\log(\frac{\text{abs}(\text{product} - \text{difference})}{\text{product}})
\]

Exponent vs. Logarithm of Relative Error
Today ...

- Flushed out recursive programs

- These details are important in getting your code to run...
 - Array indices
 - Memory allocation
 - Local or global variables
 - Checking accuracy of calculation