Introduction to Coalescent Models

Biostatistics 666 Lecture 4

Last Lecture

- Linkage Equilibrium
- Expected state for distant markers
- Linkage Disequilibrium
- Association between neighboring alleles
- Expected to decrease with distance
- Measures of linkage disequilibrium
${ }^{\circ} \mathrm{D}, \mathrm{D}$, and Δ^{2} or r^{2}

Previously ...

- DNA sequence variation
- Types of DNA variants
- Allele frequencies
- Genotype frequencies
- Hardy-Weinberg Equilibrium

Making predictions...

- What allele frequencies do we expect?
- How much variation in a gene?
- How are neighboring variants related?

Simple Approach: Simulation

1. N starting sequences
2. Sample N offspring sequences

Apply mutations according to μ
3. Increment time
4. If enough time has passed...

- Generate final sample Stop.

5. Otherwise, return to step 1.

Simulating a Population ...

Time

Today

- Introduce coalescent approach
- Framework for studying genetic variation
- Provides intuition on patterns of variation
- Provides analytical solutions

Aim ...

- Gene genealogies:
- Descriptions of relatedness between sequences
- Analogous to phylogenetic trees for species

The shape of the genealogy depends on population history, selection, etc.

Together with mutation rate, genealogy predicts DNA variation

Genealogy

- History of a particular set of sequences
- Describes their relatedness
- Specifies divergence times
- Includes only a subset of the population
- Most Recent Common Ancestor (MRCA)

Coalescent approach

- Generate genealogy for a sample of sequences.
- Introduces computational and analytical convenience.
- Instead of proceeding forward through time, go backwards!

History of the Population

Genealogy of Final Population

Levels of Complexity

- History of the population
- Includes sequences that are "extinct"
- History of all modern sequences
- Includes sequences that we haven't sampled
- History of a subset of modern sequences
- Minimalist approach!

Parameters we will focus on...

- Mutation rate (μ)
- Population Size
- Haploid population (N chromosomes)
- Diploid population (2 N chromosomes)
- Time (t)
- Sample size (n)
- Recombination rate (r)

Other Parameters

- Selection
- For gene of interest
- For neighboring gene
- Demographic parameters
- Migration
- Population Structure
- Population Growth

Mutation Model

- The mutation process is complex
- Rate depends on surrounding sequence
- Reverse mutations are possible
- Two simple models are popular
- Infinite alleles
- Every mutation generates a different allele
- Infinite sites
- Every mutation occurs at a different site

Mutation Model

- Focus on infinite sites model
- Mutation rate in genomic DNA is $\sim 10^{-8} / \mathrm{bp}$
- Recurrent mutations should be very rare
- Scaled mutation rate parameter, e.g.:
- 1000 bp sequence
- 10^{-8} mutations per base pair per generation
${ }^{-} \mu=10^{-5}$ per sequence per generation

Neutral Variants

- Variants that have do not affect fitness
- Accumulate inexorably through time
- Lost through genetic drift
- Do not affect genealogy

Example:
 Modeling Accumulation of Mutations

- Population of identical sequences
- Sample one descendant after t generations
- How many mutations have accumulated?
- Hint: depends on mutation rate μ and time t
- Tougher questions
- How many mutations have been fixed?
- How much variation in the total population?

So far...

- Divergence of a single sequence
- Accumulation of mutations
- Depends on time t
- Depends on mutation rate μ
- Does not depend on population size N
- Does not depend on population growth
- Next: A pair of sequences!

A tougher example ...

- Sample of two sequences
- 100 bp each...
- How many differences are expected?
- Population of size, $N=1000$
- Mutation rate
- $\mu=10^{-8} / \mathrm{bp} /$ generation
- $\mu \approx 10^{-6} / 100 \mathrm{bp} /$ generation

Genealogy of two sequences

Sequence 1
Sequence 2

Mutations between MRCA and Sequence 1?

Genealogy of two sequences

Time T(2)

Sequence 1
Sequence 2

Total mutations in genealogy?

Number of mutations S

- Distributed as Poisson, conditional on total tree length
${ }^{-} E(S)=\mu E\left(T_{\text {tot }}\right)$
- $\operatorname{Var}(\mathrm{S})=\mathrm{E}[\operatorname{Var}(\mathrm{S} \mid \mathrm{T})]+\operatorname{Var}[\mathrm{E}(\mathrm{S} \mid \mathrm{T})]$
$=\mu E\left(T_{\text {tot }}\right)+\mu^{2} \operatorname{Var}\left(T_{\text {tot }}\right)$
$T_{\text {tot }}$ is the total length of all branches

Estimating T(2)

- Probability that two sequences have distinct ancestors in previous generation

$$
P(2)=\frac{N-1}{N}=1-\frac{1}{N}
$$

- Probability of distinct ancestors for t generations is $P(2)^{t}$

Probability of MRCA at time t+1

$$
\begin{aligned}
P(2)^{t}(1-P(2)) & =\frac{1}{N}\left(\frac{N-1}{N}\right)^{t} \\
& =\frac{1}{N}\left(1-\frac{1}{N}\right)^{t} \\
& \approx \frac{1}{N} e^{-\frac{1}{N} t}
\end{aligned}
$$

For n > 2

- Coalescence when two sequences have common ancestor
- For simplicity, consider the possibility of multiple simultaneous coalescent events to be negligible
- Requirements for no coalescence:
- Pick one ancestor for sequence 1
- Pick distinct ancestor for sequence 2
- Pick yet another ancestor for sequence 3
...

Estimating P(n)

- Probability that n sequences have n distinct ancestors in previous generation

$$
\begin{aligned}
P(n) & =\prod_{i=1}^{n-1} \frac{N-i}{N} \\
& \approx 1-\frac{\binom{n}{2}}{N}
\end{aligned}
$$

- Assume:
- N is large
- n is small
- Terms of order N^{-2} can be ignored

Probability of Coalescence at Time t+1

$$
\begin{aligned}
& P(n)^{t}(1-P(n)) \approx\left(1-\frac{\binom{n}{2}}{N}\right)^{t}\binom{n}{2} \\
& N \\
& \approx \frac{\binom{n}{2}}{N} e^{-\frac{\binom{n}{2}}{N} t}
\end{aligned}
$$

Time to next coalescent event

- Use an exponential distribution to approximate time to next coalescent event...

Decay Rate $\lambda=\frac{\binom{n}{2}}{N}$
Mean $\quad \frac{1}{\lambda}=\frac{N}{\binom{n}{2}}$

T(j)

- For convenience, measure time to next coalescent event in units:
- N generations for haploids
- 2 N generations for diploids

$$
E\left(T_{j}\right)=1 /\binom{j}{2}
$$

- How would you calculate time to MRCA of n sequences?

Total "Time in Tree"

- Sum of all the branch lengths
- Total evolutionary time available
- e.g. for mutations to occur

$$
\begin{aligned}
E\left(T_{\text {tot }}\right) & =\sum_{i=2}^{n} i T(i)=\sum_{i=2}^{n} \frac{2 i}{i(i-1)} \\
& =\sum_{i=2}^{n} \frac{2}{i-1}=\sum_{i=1}^{n-1} \frac{2}{i}
\end{aligned}
$$

$\mathrm{T}_{\text {MRCA }}$ VS. $\mathrm{T}_{\text {TOT }}$

Number of Segregating Sites

- Commonly named S

Total number of mutations in genealogy

- Assuming no recurrent mutation
- A function of the total length of the genealogy
- $T_{\text {tot }}$

Expected number of mutations

- Factor N for haploids, 2 N for diploids

$$
\begin{aligned}
E(S) & =2 N \mu \sum_{i=2}^{n} i E(T(i)) \\
& =4 N \mu \sum_{i=1}^{n-1} 1 / i \\
& =\theta \sum_{i=1}^{n-1} 1 / i
\end{aligned}
$$

- Population geneticists define $\theta=4 \mathrm{~N} \mu$ (for diploids)
- For gene mapping, θ is usually recombination rate
- Population geneticists, use r for recombination rates

Expected number of mutations

- Factor N for haploids, 2 N for diploids

$$
\begin{aligned}
E(S) & =2 N \sum_{i=2}^{n} i E(T(i)) \\
& =4 N \mu \sum_{i=1}^{n-1} 1 / i \\
& =\theta \sum_{i=1}^{n-1} 1 / i
\end{aligned}
$$

- Population geneticists define $\theta=4 \mathrm{~N} \mu$ (for diploids)
- For gene mappers, θ is usually the recombination rate
- Population geneticists, use r for recombination rates

$E(S)$ as a function of n

More about S...

- Very large variance

$$
\operatorname{Var}(S)=\theta \sum_{i=1}^{n-1} 1 / i+\theta^{2} \sum_{i=1}^{n-1} 1 / i^{2}
$$

- Most of the variance contributed by early coalescent events (i.e. with small n)

$\operatorname{Var(S)}$ as a function of n

Parameters
$\mathrm{N}=10,000$ individuals
$\mu=10^{-4}$
$\theta=4$

Inferences about θ

- Could be estimated from S
- Divide by expected length of genealogy

$$
\hat{\theta}=\frac{S}{\sum_{i=1}^{n-1} 1 / i}
$$

- Could then be used to:
- Estimate N , if mutation rate μ is known
- Estimate μ, if population size N is known

$\operatorname{Var}(\hat{\theta})$ as a function of N

Parameters

$\mathrm{N}=10,000$ individuals
$\mu=10^{-4}$
$\theta=4$

Alternative Estimator for θ...

Count pairwise differences between sequences

- Compute average number of differences

$$
\tilde{\theta}=\binom{n}{2}^{-1} \sum_{i=1}^{n} \sum_{j=i+1}^{n} S_{i j}
$$

Today...

- Probability of coalescence events
- Length of genealogy and its branches
- Expected number of mutations
- Simple estimates of θ

Recommended Reading

Richard R. Hudson (1990)

Gene genealogies and the coalescent process
Oxford Surveys in Evolutionary Biology, Vol. 7.
D. Futuyma and J. Antonovics (Eds).

Oxford University Press, New York.

