Distribution of Mutations

Biostatistics 666
Lecture 5

Last Lecture:
 Introduction to the Coalescent

- Coalescent approach
- Proceed backwards through time.
- Genealogy of a sample of sequences.
- Infinite sites model
- All mutations distinguishable.
- No reverse mutation.

Some key ideas ...

- Probability of coalescence events
- Length of genealogy and its branches
- Expected number of mutations
- Parameter θ which combines population size and mutation rate

Building Blocks...

- Probability of sampling distinct ancestors for n sequences

$$
P(n)=\prod_{i=1}^{n-1}\left(1-\frac{i}{N}\right) \approx 1-\frac{\binom{n}{2}}{N}
$$

Coalescence time t is approximately exponentially distributed

Some Key Results...

- Coalescence Time (population size units)

$$
E\left(T_{j}\right)=1 /\binom{j}{2}
$$

Total Length (population size units)

$$
E\left(T_{\text {tot }}\right)=\sum_{i=1}^{n-1} \frac{2}{i}
$$

Some More Key Results ...

- Expected Number of Polymorphisms

For a diploid sample

$$
E(S)=4 N \mu \sum_{i=1}^{n-1} 1 / i=\theta \sum_{i=1}^{n-1} 1 / i
$$

For an haploid sample

$$
E(S)=2 N \mu \sum_{i=1}^{n-1} 1 / i=\theta \sum_{i=1}^{n-1} 1 / i
$$

Inferences about θ

- Could be estimated from S
- Divide by expected length of genealogy

$$
\hat{\theta}=\frac{S}{\sum_{i=1}^{n-1} 1 / i}
$$

- Could then be used to:
- Estimate N , if mutation rate μ is known
- Estimate μ, if population size N is known

Alternative Estimator for θ...

Count pairwise differences between sequences

- Compute average number of differences

$$
\tilde{\theta}=\binom{n}{2}^{-1} \sum_{i=1}^{n} \sum_{j=i+1}^{n} S_{i j}
$$

$\operatorname{Var}(\hat{\theta})$ as a function of N

Parameters

$\mathrm{N}=10,000$ individuals
$\mu=10^{-4}$
$\theta=4$

Today ...

- More applications of the coalescent
- Predicting allele frequency distributions
- Using simulations

The full distribution of S

- Using analytical calculations

A Coalescent Simulation ...

- Let's consider tracing the ancestry of 4 sequences

When $\mathrm{n}=4$

Probability of Coalescent Event

$$
P(4) \approx\binom{4}{2} / 2 N
$$

Time to Next Coalescent Event

$$
T(4) \approx 2 N /\binom{4}{2}
$$

Sample time from exponential distribution Pick two sequences at random to coalesce

Next n = 3 ...

Let's assume that sequences 3 and 4 are selected ...
Then, we repeat the process for a sample of 3 sequences

Next n = 2 ...

Let's assume that sequences 1 and 2 are selected to coalesce
Then, we repeat the process for a sample of 2 sequences

The Simulated Coalescent

At this point, we could place mutations in genealogy. Most often, these would fall in longer branches.

A Coalescent Simulation ...

Mutations in these branches affect a pair of sequences

A Coalescent Simulation ...

Mutations in these branches affect a single sequence

Frequency Spectrum

- Repeating the simulation multiple times, would give us a predicted mutation spectrum.

Frequency Spectrum ($\mathrm{n}=10$)

Frequency Spectrum ($\mathrm{n}=100$)

Frequency Spectrum

- Constant size population
- Exponentially growing population
- Most variants are rare
- For $n=100, \sim 44 \%$ of variants occur < 5/100.
- For $n=10, \sim 35 \%$ of variants observed once.

Mutation Spectrum

- Depends on genealogy
- Population Size
- Population Growth
- Population Subdivision
- Does not depend on
- Mutation rate!

Deviations from Neutral Spectrum

- When would you expect deviations from the spectra we described?
- What would you expect for ...
- A rapidly growing population?
- A population whose size is decreasing?
-Why?

Effect of Polymorphism Type

Number of Mutations

- Can be derived from coalescent tree
- What are the key features?
- Analytical results possible
- Trace back in time until MRCA, tracking mutation events

Sample of Two Sequences

Track coalescences and mutations

- Probability of a coalescent event?
- Depends on population size ...
- Probability of a mutation?
- Depends on mutation rate ...
- Proceed backwards until either occurs...
${ }^{\circ}$ Conditional probability for each outcome?

Two Identical Sequences

$$
\begin{aligned}
P_{2}(S \text { is } 0) & \approx \frac{P_{C A}}{P_{C A}+P_{m u t}} \\
& =\frac{1 / 2 N}{1 / 2 N+2 \mu} \\
& =\frac{1}{1+\theta}
\end{aligned}
$$

Full distribution of S...

- Probability that first j events are mutations...

$$
P_{2}(j)=\left(\frac{\theta}{1+\theta}\right)^{j}\left(\frac{1}{1+\theta}\right)
$$

Example...

- 2 sequences
- Population size N = 25,000
- Mutation rate $\mu=10^{-5}$
- Probability of $0,1,2,3 \ldots$ mutations

And for multiple sequences...

- Describe number of mutations until the next coalescence event
- Proceed back in time, until:
- One of n sequences mutates...
- A coalescent event occurs...
- Then track mutations in ($n-1$) sequences

Formulae ...

$$
\begin{aligned}
& Q_{n}(j)=\left(\frac{n \mu}{\left(\begin{array}{l}
n \\
2 \\
2
\end{array}\right.}\right)^{j} \frac{\frac{\binom{n}{2}}{2 N}}{n \mu+\frac{\binom{n}{2}}{2 N}}=\left(\frac{\theta}{\theta+n-1}\right)^{j} \frac{n-1}{\theta+n-1} \\
& P_{n}(j)=\sum_{i=0}^{j} P_{n-1}(j-i) Q_{n}(i)
\end{aligned}
$$

Example...

- 3 sequences
- Population size $\mathrm{N}=25,000$
- Mutation rate $\mu=10^{-5}$
- Probability of $0,1,2,3 \ldots$ mutations

Number of Mutations

Approximately 2 kb of sequence, sequenced in 10 individuals

So far...

- One homogeneous population
- Coalescence times
- Number of mutations
- Expectation
- Distribution
- Spectrum of mutations
- Several assumptions, including ...
- No recombination

Recombination ...

- No recombination
- Single genealogy
- Free recombination
- Two independent genealogies
- Same population history
- Intermediate case
- Correlated genealogies

Recommended Reading

Richard R. Hudson (1990)

Gene genealogies and the coalescent process
Oxford Surveys in Evolutionary Biology, Vol. 7.
D. Futuyma and J. Antonovics (Eds).

Oxford University Press, New York.

