Coalescent Models With Recombination

Biostatistics 666 Lecture 6

So far...

- Basic Properties of the Coalescent
- MRCA
${ }^{\circ}$ Coalescence times
- Number of mutations
- Frequency spectrum of polymorphisms
- Predicting number of variants in a sample

Today ...

- Further refining the coalescent
- Recombination
- Migration
- Discussion of potential applications

Recombination ...

- No recombination
- Single genealogy
- Free recombination
- Two independent genealogies
- Same population history
- Intermediate case
- Correlated genealogies

The History of Two Sequences

Let's consider the potential history of two sequences, but this time... with a twist!

The History of Two Sequences

Before we reach a common ancestor ... we find that sequence B is actually the result of recombination between two ancestral sequences

The History of Two Sequences

The next event we encounter is a coalescence event, as expected ...

The History of Two Sequences

Potential Consequences ...

- Different portions of the sequence have different coalescence times
- Different portions of the sequence will show more or less variation

Another Consequence ...

- Recombination and recurrent mutation can produce similar outcomes ...

Figure from McVean et al (Genetics, 2001)

Simulating the Coalescent with Recombination

- Assume the various alternative events are rare
- Time until the next event is approximately exponentially distributed
- Conditional on something happening, figure out whether it was:
- Recombination
- Coalescence

Generating Genealogies

- Proceed backwards in time, until...
- Coalescent event
- Reduces number of ancestors by 1

$$
P_{C A} \approx\binom{n}{2} / 2 N
$$

- Recombination

$$
P_{r e c} \approx n r
$$

- May increase number of ancestors by 1

P(First Event is CA)

$$
\begin{aligned}
P(\text { no rec }) & =\frac{P_{C A}}{P_{C A}+P_{\text {rec }}}=\frac{\binom{n}{2} / 2 N}{\binom{n}{2} / 2 N+n r} \\
& =\frac{n-1}{4 N r+n-1} \\
& =\frac{n-1}{R+n-1}
\end{aligned}
$$

Coalescent W/ Recombination

- Analytical results are difficult
- Typical approach is to ...
- First, simulate ancestral recombination graphs (ARG)
- Coalescent tree with recombination events
- Study sample properties implied by simulated ARGs
- For example, similarity in frequencies of neighboring SNPs

Correlated Genealogies

- Produce correlation in
- Allele frequencies
- Number of mutations
- Distribution of alleles among chromosomes
- Linkage disequilibrium
- Use simulations to evaluate distributions as a function of recombination rate

Example 1

- Consider a sample of $n=90$ chromosomes
- 2 locus coalescent, focus on samples where
- $\mathrm{n}_{\mathrm{A}}=30$
- $\mathrm{n}_{\mathrm{B}}=20$
- What is the distribution of n_{AB} ?
- And consequently of D^{\prime}, r^{2}

Low Recombination

Figure from Hudson et al (Genetics, 2001)

Higher Recombination

$$
\rho=10 . O
$$

Figure from Hudson et al (Genetics, 2001)

High Recombination Rate

$$
\mathrm{O}=100.0
$$

Figure from Hudson et al (Genetics, 2001)

Impact of Recombination on Haplotype Distribution

Some Notes ...

- If we are interested in studying the local recombination rate, neither r^{2} or D^{\prime} retain all the information contained in $n_{A}, n_{B}, n_{A B}$
- We can estimate R or ρ by finding the value that maximizes the probability of the observed sample configuration

Estimating Recombination Rates

- McVean et al. (Science, 2004) estimated the following "pseudo-likelihood" for a sample of haplotypes:

$$
\ell(4 N r)=\sum_{i j} \ell\left(n_{i}, n_{j}, n_{i j} \mid 4 N r_{i j}\right)
$$

(summation is over all pairs of markers)

- Estimated recombination rates allow us to predict what other chromosomes or samples from the population might look like.

Recombination Rate Within HLA

Fig. 2. Comparison between estimates of local recombination rates from population genetic data (red) and sperm analysis (blue) in the HLA region; data from (3). To convert the male crossing over rates to sex-averaged rates, we used the previous observation that the female crossing-over rate in this region is about four times that of males (42).

Pairwise LD in HLA

b
$q>0.15$

Pairwise LD data from Jeffrey's et al (2001)

Other Multi-Locus Coalescents

- Predicting correlation in number of mutations for neighboring regions
- If mutation rate were constant, would correspond to correlation of $\mathrm{T}_{\text {TOT }}$ between the two regions

Total number of mutations

- Recombination does not change expectation for S...

$$
E(S)=4 N \mu \sum_{i=1}^{n-1} 1 / i=\theta \sum_{i=1}^{n-1} 1 / i
$$

... but it reduces its variance.

- With large r, S is effectively averaged over multiple genealogies

Number of Mutations

Total Time in Tree

Sample size 10
Corresponds to ~250kb in humans

Population Subdivision

- What if the population is not mating at random, but is made up of multiple small groups?

Track migration among ancestors...

High Migration rate ...

Low Migration rate ...

(b)

Formulae:

If the two subpopulations each have N diploids
Coalescent among n_{1} lineages in population 1

$$
\binom{n_{1}}{2} / 2 \mathrm{~N}
$$

Coalescent among n_{2} lineages in population 2

$$
\binom{n_{2}}{2} / 2 \mathrm{~N}
$$

Migration

$$
\left(n_{1}+n_{2}\right) m
$$

Conditional Probabilities

Conditional Probability of Coalescence
$\frac{\binom{n_{1}}{2}}{\binom{n_{1}}{2}+\binom{n_{2}}{2}+\left(n_{1}+n_{2}\right) \frac{M}{2}}$
where $M=4 \mathrm{Nm}$ is the probability of coalescence in population 1

Conditional Probabilities

Conditional Probability of Migration

$$
\frac{n_{1} \frac{M}{2}}{\binom{n_{1}}{2}+\binom{n_{2}}{2}+\left(n_{1}+n_{2}\right) \frac{M}{2}}
$$

is the probability of migration from population 1 to 2 .

Models with Migration

- As in the case with recombination, most predictions are based on simulations

The models for migration are analogous to those with balancing selection

- Replace migration rate with the mutation rate between the two alleles

Questions that Coalescent Can Tackle...

- Frequency spectrum of observed mutations
- Impact of population growth
- How many mutations are unique?
- Disequilibrium coefficient
- Joint distribution of $\left(p_{A}, p_{B}, D_{A B}\right)$
- Impact of population growth

MS Computer Program

- Coalescent Simulator
- by Richard Hudson at U. of Chicago
- Generates samples of sequences
- Population and subpopulation sizes
- Mutation rate ($\theta=4 \mathrm{~N} \mu$)
- Recombination rate ($\mathrm{R}=4 \mathrm{Nr}$)
- http://home.uchicago.edu/~rhudson1/

Recommended Reading

- Richard R. Hudson (1990) "Gene Genealogies and the coalescent process"
- from Oxford Surveys in Evolutionary Biology, Vol. 7. D. Futuyma and J. Antonovics (Eds). Oxford University Press, New York.

