Maximum Likelihood Estimation for Allele Frequencies

Biostatistics 666
Lecture 7
Last Three Lectures: Introduction to Coalescent Models

- Computationally efficient framework
 - Alternative to forward simulations

- Predictions about sequence variation
 - Number of polymorphisms
 - Frequency of polymorphisms
Coalescent Models: Key Ideas

- Proceed backwards in time

- Genealogies shaped by
 - Population size
 - Population structure
 - Recombination rates

- Given a particular genealogy ...
 - Mutation rate predicts variation
Next Series of Lectures

- Estimating allele and haplotype frequencies from genotype data
 - Maximum likelihood approach
 - Application of an E-M algorithm

- Challenges
 - Using information from related individuals
 - Allowing for non-codominant genotypes
 - Allowing for ambiguity in haplotype assignments
Objective: Parameter Estimation

- Learn about population characteristics
 - E.g. allele frequencies, population size

- Using a specific sample
 - E.g. a set sequences, unrelated individuals, or even families
Maximum Likelihood

- A general framework for estimating model parameters
- Find the set of parameter values that maximize the probability of the observed data
- Applicable to many different problems
Example: Allele Frequencies

Consider...

- A sample of n chromosomes
- X of these are of type “a”
- Parameter of interest is allele frequency...

\[
L(p \mid n, X) = \binom{n}{X} p^X (1 - p)^{n-X}
\]
Evaluate for various parameters

<table>
<thead>
<tr>
<th>p</th>
<th>1-p</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1.0</td>
<td>0.000</td>
</tr>
<tr>
<td>0.2</td>
<td>0.8</td>
<td>0.088</td>
</tr>
<tr>
<td>0.4</td>
<td>0.6</td>
<td>0.251</td>
</tr>
<tr>
<td>0.6</td>
<td>0.4</td>
<td>0.111</td>
</tr>
<tr>
<td>0.8</td>
<td>0.2</td>
<td>0.006</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0</td>
<td>0.000</td>
</tr>
</tbody>
</table>
Likelihood Plot

For $n = 10$ and $X = 4$
In this case

- The likelihood tells us the data is most probable if $p = 0.4$

- The likelihood curve allows us to evaluate alternatives…
 - Is $p = 0.8$ a possibility?
 - Is $p = 0.2$ a possibility?
Example: Estimating $4N\mu$

- Consider S polymorphisms in sample of n sequences...

$$L(\theta \mid n, S) = P_n(S \mid \theta)$$

- Where P_n is calculated using the Q_n and P_2 functions defined previously.
Likelihood Plot

With $n = 5$, $S = 10$
Maximum Likelihood Estimation

- Two basic steps...
 a) Write down likelihood function
 \[L(\theta \mid x) \propto f(x \mid \theta) \]
 b) Find value of \(\hat{\theta} \) that maximizes \(L(\theta \mid x) \)
- In principle, applicable to any problem where a likelihood function exists
MLEs

- Parameter values that maximize likelihood
 - \(\theta \) where observations have maximum probability

- Finding MLEs is an optimization problem

- How do MLEs compare to other estimators?
Comparing Estimators

- How do MLEs rate in terms of …
 - Unbiasedness
 - Consistency
 - Efficiency

- For a review, see Garthwaite, Jolliffe, Jones (1995) *Statistical Inference*, Prentice Hall
Analytical Solutions

- Write out log-likelihood ...

\[\ell(\theta \mid data) = \ln L(\theta \mid data) \]

- Calculate derivative of likelihood

\[\frac{d \ell(\theta \mid data)}{d \theta} \]

- Find zeros for derivative function
Information

- The second derivative is also extremely useful

 \[I_\theta = -E \left[\frac{d^2 \ell(\theta \mid data)}{d\theta^2} \right] \]

 \[V_\hat{\theta} = \frac{1}{I_\theta} \]

- The speed at which log-likelihood decreases
- Provides an asymptotic variance for estimates
Allele Frequency Estimation ...

- When individual chromosomes are observed this does not seem tricky...

- What about with genotypes?

- What about with parent-offspring pairs?
Coming up ...

We will walk through allele frequency estimation in three distinct settings:

- Samples single chromosomes …
- Samples of unrelated Individuals …
- Samples of parents and offspring …
I. Single Alleles Observed

Consider...

- A sample of \(n \) chromosomes
- \(X \) of these are of type “a”
- Parameter of interest is allele frequency...

\[
L(p \mid n, X) = \binom{n}{X} p^X (1 - p)^{n-X}
\]
The following two likelihoods are just as good:

\[
L(p; X, n) = \binom{n}{X} p^X (1 - p)^{n-X}
\]

\[
L(p; x_1, x_2, \ldots x_n, n) = \prod_{i=1}^{n} p^{x_i} (1 - p)^{1-x_i}
\]

For ML estimation, constant factors in likelihood don’t matter.
Analytic Solution

- The log-likelihood

\[\ln L(\theta \mid n, X) = \ln \binom{n}{X} + X \ln p + (n - X) \ln(1 - p) \]

- The derivative

\[\frac{d \ln L(p \mid X)}{dp} = \frac{X}{p} - \frac{n - X}{1 - p} \]

- Find zero …
The natural estimator (where we count the proportion of sequences of a particular type) and the MLE give identical solutions.

Maximum likelihood provides a justification for using the “natural” estimator.
II. Genotypes Observed

<table>
<thead>
<tr>
<th>Genotype</th>
<th>(A_1A_1)</th>
<th>(A_1A_2)</th>
<th>(A_2A_2)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed</td>
<td>(n_{11})</td>
<td>(n_{12})</td>
<td>(n_{22})</td>
<td>(n=n_{11}+n_{12}+n_{22})</td>
</tr>
<tr>
<td>Frequency</td>
<td>(p_{11})</td>
<td>(p_{12})</td>
<td>(p_{22})</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Alleles

<table>
<thead>
<tr>
<th>Genotype</th>
<th>(A_1)</th>
<th>(A_2)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed</td>
<td>(n_1=2n_{11}+n_{12})</td>
<td>(n_2=2n_{22}+n_{12})</td>
<td>(2n=n_1+n_2)</td>
</tr>
<tr>
<td>Frequency</td>
<td>(p_1=n_1/2n)</td>
<td>(p_2=n_2/2n)</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Consider a Set of Genotypes...

- Use notation n_{ij} to denote the number of individuals with genotype i / j
- Sample of n individuals

<table>
<thead>
<tr>
<th>Genotype</th>
<th>A_1A_1</th>
<th>A_1A_2</th>
<th>A_2A_2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed</td>
<td>n_{11}</td>
<td>n_{12}</td>
<td>n_{22}</td>
<td>$n=n_{11}+n_{12}+n_{22}$</td>
</tr>
<tr>
<td>Frequency</td>
<td>p_{11}</td>
<td>p_{12}</td>
<td>p_{22}</td>
<td>1.0</td>
</tr>
</tbody>
</table>
A natural estimate for allele frequencies is to calculate the proportion of individuals carrying each allele.

<table>
<thead>
<tr>
<th>Alleles</th>
<th>Genotype</th>
<th>A_1</th>
<th>A_2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed</td>
<td>n_1=2n_{11}+n_{12}</td>
<td>n_2=2n_{22}+n_{12}</td>
<td>2n=n_1+n_2</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>p_1=n_1/2n</td>
<td>p_2=n_2/2n</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>
MLE using genotype data...

- Consider a sample such as ...

<table>
<thead>
<tr>
<th>Genotype</th>
<th>A₁A₁</th>
<th>A₁A₂</th>
<th>A₂A₂</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed</td>
<td>n₁₁</td>
<td>n₁₂</td>
<td>n₂₂</td>
<td>n=n₁₁+n₁₂+n₂₂</td>
</tr>
</tbody>
</table>

- The likelihood as a function of allele frequencies is ...

\[L(p; n) = \frac{n!}{n_{11}!n_{12}!n_{22}!} (p^2)^{n_{11}} (2pq)^{n_{12}} (q^2)^{n_{22}} \]
Which gives...

- Log-likelihood and its derivative

\[\ell = \ln L = (2n_{11} + n_{12}) \ln p_1 + (2n_{22} + n_{12}) \ln(1 - p_1) + C \]

\[\frac{d\ell}{dp_1} = \frac{2n_{11} + n_{12}}{p_1} - \frac{2n_{22} + n_{12}}{(1 - p_1)} \]

- Giving the MLE as ...

\[\hat{p}_1 = \frac{(2n_{11} + n_{12})}{2(n_{11} + n_{12} + n_{22})} \]
Samples of Unrelated Individuals

- Again, natural estimator (where we count the proportion of alleles of a particular type) and the MLE give identical solutions.

- Maximum likelihood provides a justification for using the “natural” estimator.
III. Parent-Offspring Pairs

<table>
<thead>
<tr>
<th>Parent</th>
<th>Child</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁A₁</td>
<td>A₁A₁</td>
<td>A₁A₂</td>
<td>A₂A₂</td>
<td>a₁ + a₂</td>
</tr>
<tr>
<td>A₁A₂</td>
<td>a₃</td>
<td>a₄</td>
<td>a₅</td>
<td>a₃ + a₄ + a₅</td>
</tr>
<tr>
<td>A₂A₂</td>
<td>0</td>
<td>a₆</td>
<td>a₇</td>
<td>a₆ + a₇</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\text{a₁ + a₃} & \quad \text{a₂ + a₄ + a₆} & \quad \text{a₅ + a₇} & \quad \text{N pairs}
\end{align*}
\]
Probability for Each Observation

<table>
<thead>
<tr>
<th>Parent</th>
<th>A₁A₁</th>
<th>A₁A₂</th>
<th>A₂A₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁A₁</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A₁A₂</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A₂A₂</td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
</tbody>
</table>
Probability for Each Observation

<table>
<thead>
<tr>
<th>Parent</th>
<th>A₁A₁</th>
<th>A₁A₂</th>
<th>A₂A₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁A₁</td>
<td>p₁³</td>
<td>p₁²p₂</td>
<td>0</td>
</tr>
<tr>
<td>A₁A₂</td>
<td>p₁²p₂</td>
<td>p₁p₂</td>
<td>p₁p₂²</td>
</tr>
<tr>
<td>A₂A₂</td>
<td>0</td>
<td>p₁p₂²</td>
<td>p₂³</td>
</tr>
</tbody>
</table>

| Child | p₁² | 2p₁p₂| p₂² | 1.0 |

- A₁, A₂: Alleles
- p₁, p₂: Probabilities of alleles

Parent: A₁A₁, A₁A₂, A₂A₂
Child: A₁A₁, A₁A₂, A₂A₂
Which gives...

\[\ln L = \]

\[p_2 = 1 - p_1 \]
\[B = 3a_1 + 2(a_2 + a_3) + a_4 + (a_5 + a_6) \]
\[C = (a_2 + a_3) + a_4 + 2(a_5 + a_6) + 3a_7 \]

\[\hat{p}_1 = \frac{B}{B + C} \]
Which gives...

\[
\ln L = a_1 \ln p_1^3 + (a_2 + a_3) \ln (p_1^2 p_2) + a_4 \ln (p_1 p_2)
+ (a_5 + a_6) \ln (p_1 p_2^2) + a_7 \ln p_2^3 + \text{constant}
= B \ln p_1 + C \ln (1 - p_1)
\]

\[
p_2 = 1 - p_1
\]

\[
B = 3a_1 + 2(a_2 + a_3) + a_4 + (a_5 + a_6)
\]

\[
C = (a_2 + a_3) + a_4 + 2(a_5 + a_6) + 3a_7
\]

\[
\hat{p}_1 = \frac{B}{B + C}
\]
Samples of Parent Offspring-Pairs

- The natural estimator (where we count the proportion of alleles of a particular type) and the MLE no longer give identical solutions

- In this case, we expect the MLE to be more accurate
Comparing Sampling Strategies

- We can compare sampling strategies by calculate the information for each one

\[I_\theta = -E \left[\frac{d^2 \ell(\theta \mid data)}{d\theta^2} \right] \]

\[V_\hat{\theta} = \frac{1}{I_\theta} \]

- Which one to you expect to be most informative?
How informative is each setting?

- Single chromosomes
 \[Var(p) = \frac{pq}{N} \]

- Unrelated individuals
 \[Var(p) = \frac{pq}{2N} \]

- Parent offspring trios
 \[Var(p) = \frac{pq}{3N - a_4} \]
Other Likelihoods

- Allele frequencies when individuals are...
 - Diagnosed for Mendelian disorder
 - Genotyped at two neighboring loci
 - Phenotyped for the ABO blood groups

- Many other interesting problems...
- … but some have no analytical solution
Today’s Summary

- Examples of Maximum Likelihood

- Allele Frequency Estimation
 - Allele counts
 - Genotype counts
 - Pairs of Individuals
Take home reading

- Excoffier and Slatkin (1996)
 - Introduces the E-M algorithm
 - Widely used for maximizing likelihoods in genetic problems
Properties of Estimators

For Review
Unbiasedness

- An estimator is unbiased if

\[E(\hat{\theta}) = \theta \]

\[bias(\hat{\theta}) = E(\hat{\theta}) - \theta \]

- Multiple unbiased estimators may exist
- Other properties may be desirable
Consistency

- An estimator is consistent if

\[P(\mid \hat{\theta} - \theta \mid > \varepsilon) \to 0 \text{ as } n \to \infty \]

- for any \(\varepsilon \)

- Estimate converges to true value in probability with increasing sample size
Mean Squared Error

- MSE is defined as

\[MSE(\hat{\theta}) = E\left(\left(\hat{\theta} - \bar{\theta}\right)^2 + \left(\bar{\theta} - \theta\right)^2\right) = \text{var}(\hat{\theta}) + \text{bias}(\hat{\theta})^2 \]

- If \(MSE \rightarrow 0 \) as \(n \rightarrow \infty \) then the estimator must be consistent
 - The reverse is not true
Efficiency

- The relative efficiency of two estimators is the ratio of their variances

\[
\text{if } \frac{\text{var}(\hat{\theta}_2)}{\text{var}(\hat{\theta}_1)} > 1 \text{ then } \hat{\theta}_1 \text{ is more efficient}
\]

- Comparison only meaningful for estimators with equal biases
Sufficiency

- Consider…
 - Observations X_1, X_2, \ldots, X_n
 - Statistic $T(X_1, X_2, \ldots, X_n)$

- T is a sufficient statistic if it includes all information about θ in the sample
 - Distribution of X_i conditional on T is independent of θ
 - Posterior distribution of θ conditional on T is independent of X_i
Minimal Sufficient Statistic

- There can be many alternative sufficient statistics.

- A statistic is a minimal sufficient statistic if it can be expressed as a function of every other sufficient statistic.
Typical Properties of MLEs

- **Bias**
 - Can be biased or unbiased

- **Consistency**
 - Subject to regularity conditions, MLEs are consistent

- **Efficiency**
 - Typically, MLEs are asymptotically efficient estimators

- **Sufficiency**
 - Often, but not always

- Cox and Hinkley, 1974
Strategies for Likelihood Optimization

For Review
Generic Approaches

- Suitable for when analytical solutions are impractical
- Bracketing
- Simplex Method
- Newton-Rhapson
Bracketing

- Find 3 points such that
 - $\theta_a < \theta_b < \theta_c$
 - $L(\theta_b) > L(\theta_a)$ and $L(\theta_b) > L(\theta_c)$

- Search for maximum by
 - Select trial point in interval
 - Keep maximum and flanking points
Bracketing
The Simplex Method

- Calculate likelihoods at simplex vertices
 - Geometric shape with k+1 corners
 - E.g. a triangle in k = 2 dimensions

- At each step, move the high vertex in the direction of lower points
The Simplex Method II

Original Simplex

high

low

reflection

contraction

reflection and expansion

multiple contraction
One parameter maximization

- Simple but inefficient approach

- Consider
 - Parameters $\theta = (\theta_1, \theta_2, \ldots, \theta_k)$
 - Likelihood function $L(\theta; x)$

- Maximize θ with respect to each θ_i in turn
 - Cycle through parameters
The Inefficiency...
Steepest Descent

- Consider
 - Parameters $\theta = (\theta_1, \theta_2, \ldots, \theta_k)$
 - Likelihood function $L(\theta; x)$

- Score vector

\[
S = \frac{d \ln(L)}{d \theta} = \left(\frac{d \ln(L)}{d \theta_1}, \ldots, \frac{d \ln(L)}{d \theta_k} \right)
\]

- Find maximum along $\theta + \delta S$
Still inefficient...

Consecutive steps are perpendicular!
Local Approximations to Log-Likelihood Function

In the neighborhood of θ_i

$$\ell(\theta) \approx \ell(\theta_i) + S(\theta - \theta_i) - \frac{1}{2} (\theta - \theta_i)^t I_\theta (\theta - \theta_i)$$

where

$$\ell(\theta) = \ln L(\theta)$$ is the loglikelihood function

$$S = d\ell(\theta_i)$$ is the score vector

$$I_\theta = -d^2 \ell(\theta_i)$$ is the observed information matrix
Newton’s Method

Maximize the approximation

\[\ell(\theta) \approx \ell(\theta_i) + S(\theta - \theta_i) - \frac{1}{2} (\theta - \theta_i)'^t I(\theta - \theta_i) \]

by setting its derivative to zero...

\[S - I(\theta - \theta_i) = 0 \]

and get a new trial point

\[\theta_{i+1} = \theta_i + I^{-1}S \]
Fisher Scoring

- Use expected information matrix instead of observed information:

\[
E \left[-\frac{d^2 \ell(\theta)}{d\theta^2} \right]
\]

instead of

\[
- \frac{d^2 \ell(\theta \mid \text{data})}{d\theta^2}
\]

Compared to Newton-Rhapson:

Converges faster when estimates are poor.

Converges slower when close to MLE.