Replacing IBS with IBD: The MLS Method

Biostatistics 666
Lecture 15

Previous Lecture

- Analysis of Affected Relative Pairs
- Test for Increased Sharing at Marker
- Expected Amount of IBS Sharing

Previous Lecture: Expected IBS Sharing

- Calculated probability of IBS for each IBD state
- Probability of IBD state depends on relationship
- Under the null hypothesis of no linkage

$$
P(I B S=i \mid R)=\sum_{j=0}^{2} P(I B S=i \mid I B D=j) P(I B D=j \mid R)
$$

Shortcomings of IBS Method

- All sharing is weighted equally
- Sharing a rare allele
- Sharing a common allele
- Sharing homozygous genotype
- Sharing heterozygous genotype
- Inefficient.
- Data contains additional information that is being ignored.

Today

- A likelihood based approach
- Evaluate linkage in fully informative pairs
- An E-M algorithm for practical settings
- MLS method, Risch (1990)

Simple Case

- If IBD could be observed
- Each pair of individuals scored as
- IBD=0
- $1 B D=1$
- $\operatorname{IBD}=2$
- Evaluate likelihood for null and alternative hypothesis

The Model

- Depends on three parameters $\mathrm{z}_{0}, \mathrm{z}_{1}, \mathrm{z}_{2}$
${ }^{\bullet}$ Probability of sharing 0,1 and 2 alleles IBD
- Under the null, determined by relationship
- Under the alternative, determined by genetic model

Sib Pair Likelihood (Fully Informative Data)

Under the null hypothesis:

$$
L=(1 / 4)^{n_{\operatorname{RDO}}}(1 / 2)^{n_{\operatorname{BDD}}}\left(\frac{1}{4}\right)^{n_{\mathrm{BDD}}}
$$

Under the alternative hypothesis

$$
L=\left(\hat{z}_{0}\right)^{n_{\text {BDO }}}\left(\hat{z}_{1}\right)^{n_{\text {BBD }}}\left(\hat{z}_{2}\right)^{n_{\mathrm{BBD} 2}}
$$

Testing for Linkage

- Evaluate likelihood at null hypothesis
- Evaluate likelihood at MLE
- Compare alternatives using likelihood ratio test

Commonly Used Test Statistics

$$
\begin{aligned}
L O D & =\log _{10} \frac{L\left(\hat{z}_{0}, \hat{z}_{1}, \hat{z}_{2}\right)}{L\left(z_{0}=1 / 4, z_{1}=1 / 2, z_{2}=1 / 4\right)} \\
\chi^{2} & =2 \ln \frac{L\left(\hat{z}_{0}, \hat{z}_{1}, \hat{z}_{2}\right)}{L\left(z_{0}=1 / 4, z_{1}=1 / 2, z_{2}=1 / 4\right)} \\
& =2 \ln L\left(\hat{z}_{0}, \hat{z}_{1}, \hat{z}_{2}\right)-2 \ln L\left(z_{0}=1 / 4, z_{1}=1 / 2, z_{2}=1 / 4\right)
\end{aligned}
$$

Example

$5 x$

$\operatorname{IBD}=1$ 1 2
$5 x \quad 1 / 2 \quad 1 \sqrt{2}$

$\operatorname{IBD}=2 \quad 2 \sqrt{2}$
$2 \sqrt{2}$

Example

- Assume that 10 sib-pairs are examined
- 5 share 2 alleles IBD
- 5 share 1 allele IBD
- Calculate likelihood for null
- Calculate MLEs
- Calculate LOD score
- Evaluate LOD for each pair

In real life...

- Markers are only partially informative
- IBD sharing is equivocal
- Some uncertainty removed by examining relatives
- Need an alternative likelihood
- Should allow for partially informative data

Desirable Properties

- Also depends on parameters $\mathrm{z}_{0}, \mathrm{z}_{1}, \mathrm{z}_{2}$
- Probability of sharing 0,1 and 2 alleles IBD
- Can incorporate partial information on IBD sharing
- For fully informative data, equivalent to previous likelihood

For A Single Family

$$
L_{i}=\sum_{j=0}^{2} P(I B D=j \mid A S P) P\left(\text { Genotypes }_{i} \mid I B D=j\right)=\sum_{j=0}^{2} z_{j} w_{i j}
$$

Risch (1990) defines

$$
w_{i j}=P\left(\text { Genotypes }_{i} \mid I B D=j\right)
$$

We only need proportionate $w_{i j}$

Likelihood and LOD Score

$$
\begin{aligned}
& L\left(z_{0}, z_{1}, z_{2}\right)=\prod_{i} \sum_{j} z_{j} w_{i j} \\
& L O D=\log _{10} \prod_{1} \frac{\hat{y}_{0} w_{10}+\hat{z}_{1} w_{1}+\hat{z}_{2} w_{12}}{1 / w_{10}+1 / w_{11}+1 / 4 w_{12}}
\end{aligned}
$$

The MLS statistic is the LOD evaluated at the MLEs of $\mathrm{z}_{0}, \mathrm{z}_{1}, \mathrm{z}_{2}$

Example: Scoring of w_{ij}

In this case, only one of the weights is non-zero for each family.

More interesting examples: w_{ij}

In these cases, multiple weights are non-zero (but equal) for each family.

More interesting examples: w_{ij}

In this case, relative weights depend on allele frequency.

How to maximize likelihood?

- If all families are informative
- Use sample proportions of IBD=0, 1, 2
- If some families are uninformative
- Use an E-M algorithm
- At each stage generate complete dataset with fractional counts
- Iterate until estimates of LOD and z parameters are stable

Assigning Partial Counts in E-M

$$
\begin{aligned}
P(I B D & =j \mid \text { Genotypes })= \\
& =\frac{P(I B D=j \mid A S P) P(\text { Genotypes } \mid I B D=j)}{L_{i}} \\
& =\frac{P(I B D=j \mid A S P) P(\text { Genotypes } \mid I B D=j)}{\sum_{k=0}^{2} P(I B D=k \mid A S P) P(\text { Genotypes } \mid I B D=k)} \\
& =\frac{Z_{j} w_{i j}}{\sum_{k=0}^{2} Z_{k} w_{i k}}
\end{aligned}
$$

Example

Assume a bi-allelic marker where the two alleles have identical frequencies.

Example of E-M Steps

Parameters				Equivocal Families								Other		
z0	z1	z2	IBD=0	IBD=1	IBD=2	IBD=2	LOD	LODi	LODu					
0.250	0.500	0.250	0.56	2.22	2.22	5	0.00	0.00	0.00					
0.056	0.222	0.722	0.08	0.66	4.26	5	3.19	2.30	0.89					
0.008	0.066	0.926	0.01	0.17	4.82	5	4.01	2.84	1.16					
0.001	0.017	0.982	0.00	0.04	4.96	5	4.20	2.97	1.23					
0.000	0.004	0.996	0.00	0.01	4.99	5	4.25	3.00	1.24					
0.000	0.001	0.999	0.00	0.00	5.00	5	4.26	3.01	1.25					
0.000	0.000	1.000	0.00	0.00	5.00	5	4.26	3.01	1.25					

Properties of Pair Analyses Explored by Risch

- Effect of marker informativeness
- Effect of adding relative genotypes
- Size of genetic effect
- Degree of relationship

PIC:

Measure of Marker Informativeness

- Probability that alleles of parent can be distinguished in offspring
- Botstein et al, 1980.
- Markers that could track dominant alleles
- Probability that parent is heterozygous and informative in relation to spouse

PIC - Definition

- In general:

$$
\text { PIC }=1-\sum_{i=1}^{n} p_{i}^{2}-\sum_{i=1}^{n} \sum_{j=i+1}^{n} 2\left(p_{i} p_{j}\right)^{2}
$$

For a equally frequent alleles

$$
\text { PIC }=\frac{a-1}{a}-\frac{a-1}{a^{3}}
$$

- PIC <= Heterozygosity

Some PICs and Heterozygosities

Alleles	PIC	\mathbf{H}
2	0.38	0.50
3	0.59	0.67
4	0.70	0.75
5	0.77	0.80
8	0.86	0.88
10	0.89	0.90
20	0.95	0.95

Marker Informativeness

Proportion of LOD Retained

Marker Informativeness Gene of Modest Effect ($\lambda_{0}=3$)

Expected LOD Score

Marker Informativeness Gene of Larger Effect ($\lambda_{0}=10$)

Expected LOD Score

Genotypes of Other Family Members

- Expected LOD score decreases
- by < 33\% if only sib-pairs are typed
- by $<60 \%$ for second degree relatives
- by $<70 \%$ for third degree relatives
- Genotyping effort decreases by
- by 50\% if only sib-pairs are typed
- by 60\% if only second degree relatives typed
- by 75\% if only third degree relatives typed

Quick Comment on Literature

- Greenwood and Schork (2004) suggested that uninformative families could bias MLS
- However, their results use a poor estimate for MLEs
- If an E-M algorithm is used, there is no problem

Today ...

- Describe a likelihood model based on IBD sharing for pairs of individuals
- Model accommodates partially informative families
- Maximum LOD score can be calculated using an E-M algorithm

Recommended Reading

- Risch (1990)
- Linkage Strategies for Genetically Complex Traits. III. The Effect of Marker Polymorphism on Analysis of Affected Relative Pairs
- Am J Hum Genet 46:242-253
- Introduces MLS method for linkage analysis
- Still, one of the best methods for analysis pair data
- Evaluates different sampling strategies
- Results were later corrected by Risch (1992)

Recommended Reading

- Risch (1992)
- Corrections to Linkage strategies for genetically complex traits. III. The effect of marker polymorphism on analysis of affected relative pairs.
- Am J Hum Genet 51:673-675
- Evaluates utility of parental genotype data

