Modeling IBD for
 Pairs of Relatives

Biostatistics 666
Lecture 17

Previously ...

- Linkage Analysis of Relative Pairs
- IBS Methods
${ }^{\circ}$ Compare observed and expected sharing
- IBD Methods
${ }^{-}$Account for frequency of shared alleles
- Provide estimates of IBD sharing at each locus

IBS Linkage Test

$$
\chi_{2 d f}^{2}=\sum_{i} \frac{\left(N_{I B S=i}-E\left[N_{I B S=i}\right]\right)^{2}}{E\left(N_{I B S=i}\right)}
$$

- $E\left(N_{I B S=i}\right)$ depends on N and allele frequencies
- Bishop and Williamson (1990)

Likelihood for Sibpair Data

$L_{i} \propto \sum_{j=0}^{2} P(I B D=j \mid A S P) P($ Genotypes $\mid I B D=j) \propto \sum_{j=0}^{2} z_{j} w_{i j}$

Risch (1990) defines

$$
\begin{gathered}
w_{i j} \propto P\left(\text { Genotypes }_{i} \mid I B D=j\right) \\
z_{i}=P(I B D=i \mid \text { affected relative pair })
\end{gathered}
$$

MLS Statistic of Risch (1990)

$L\left(z_{0}, z_{1}, z_{2}\right)=\prod_{i} \sum_{j} z_{j} w_{i j}$
$L O D=\log _{10} \prod_{i} \frac{\hat{z}_{0} w_{i 0}+\hat{z}_{1} w_{i 1}+\hat{z}_{2} w_{i 2}}{1 / 4 w_{i 0}+1 / 2 w_{i 1}+1 / 4 w_{i 2}}=\frac{\chi^{2}}{2 \ln 10}$

The MLS statistic is the LOD evaluated at the MLEs of $\mathrm{z}_{0}, \mathrm{z}_{1}, \mathrm{z}_{2}$
The $\hat{\mathrm{z}}_{0}, \hat{\mathrm{z}}_{1}, \hat{\mathrm{z}}_{2}$ can be estimated using an E-M algorithm

Today ...

- Predicting IBD for affected relative pairs
- Modeling marginal effect of a single locus
${ }^{-}$Relative risk ratio $\left(\lambda_{R}\right)$

The Possible Triangle for Sibling Pairs

- Plausible IBD values for affected siblings
- Refinement of the model of Risch (1990)

Single Locus Model

1. Allele frequencies

- For normal and susceptibility alleles

2. Penetrances

- Probability of disease for each genotype
- Useful in exploring behavior of linkage tests
- A simplification of reality
- Ignore effect of other loci and environment

Penetrance

- $f_{i j}=P($ Affected $\mid G=i j)$
- Probability someone with genotype ij is affected
- Models the marginal effect of each locus

Using Penetrances

- Allele frequency p
- Genotype penetrances f_{11}, f_{12}, f_{22}
- Probability of genotype given disease
${ }^{-} P(G=i j \mid D)=$
- Prevalence
- K =

Pairs of Individuals

- A genetic model can predict probability of sampling different affected relative pairs
- We will consider some simple cases:
- Unrelated individuals
- Parent-offspring pairs
- Monozygotic twins
- What do the pairs above have in common?

What we might expect ...

- Related individuals have similar genotypes
- For a genetic disease...
- Probability that two relatives are both affected must be greater or equal to the probability that two randomly sampled unrelated individuals are affected

Relative Risk and Prevalence

- In relation to affected proband, define
- K_{R} prevalence in relatives of type R
- $\lambda_{R}=K_{R} / K$ increase in risk for relatives of type R
- λ_{R} is a measure of the overall effect of a locus
- Useful for predicting power of linkage studies

Unrelated Individuals

- Probability of affected pair

$$
\begin{aligned}
P(a \text { and } b \text { affected }) & =\mathrm{P}(a \text { affected }) \mathrm{P}(b \text { affected }) \\
& =\mathrm{P}(\text { affected })^{2} \\
& =\left[p^{2} f_{11}+2 p(1-p) f_{12}+(1-p)^{2} f_{22}\right]^{2} \\
& =K^{2}
\end{aligned}
$$

- For any two related individuals, probability that both are affected should be greater

Monozygotic Twins

- Probability of affected pair

$$
\begin{aligned}
P(M Z \text { pair affected }) & =\sum_{G} P(G) P(a \text { affected } \mid G) P(b \text { affected } \mid G) \\
& =p^{2} f_{11}^{2}+2 p(1-p) f_{12}^{2}+(1-p)^{2} f_{22}^{2} \\
& =K_{M Z} K \\
& =\lambda_{M Z} K K
\end{aligned}
$$

- λ_{MZ} will be greater than for any other relationship

Probability for Genotype Pairs

Child

Parent	$A_{1} A_{1}$	$A_{1} A_{2}$	$A_{2} A_{2}$	
$A_{1} A_{1}$	$p_{1}{ }^{3}$	$p_{1}{ }^{2} p_{2}$	0	$p_{1}{ }^{2}$
$A_{1} A_{2}$	$p_{1}{ }^{2} p_{2}$	$p_{1} p_{2}$	$p_{1} p_{2}{ }^{2}$	$2 p_{1} p_{2}$
$A_{2} A_{2}$	0	$p_{1} p_{2}{ }^{2}$	$p_{2}{ }^{3}$	$p_{2}{ }^{2}$
	$p_{1}{ }^{2}$	$2 p_{1} p_{2}$	$p_{2}{ }^{2}$	N pairs

Probability of Genotype Pairs and Being Affected

Child

Parent	$A_{1} A_{1}$	$A_{1} A_{2}$	$A_{2} A_{2}$	
$A_{1} A_{1}$	$p_{1}{ }^{3} f_{11}{ }^{2}$	$p_{1}{ }^{2} p_{2} f_{12} f_{12} f_{11}$	0	
$A_{1} A_{2}$	$p_{1}{ }^{2} p_{2} f_{11} f_{12}$	$p_{1} p_{2} f_{12}{ }^{2}$	$p_{1} p_{2}{ }^{2} f_{12} f_{22}$	
$A_{2} A_{2}$	0	$p_{1} p_{2}{ }^{2} f_{12} f_{22}$	$p_{2}{ }^{3} f_{22}{ }^{2}$	
				N pairs

Parent Offspring Pairs

- Probability of Affected Pair

$$
\begin{aligned}
P & =P(\text { parent and child affected }) \\
& =\sum_{\mathrm{G}_{\mathrm{p}}} \sum_{\mathrm{G}_{\mathrm{o}}} P\left(G_{P}, G_{o}\right) f_{G_{p}} f_{G_{o}} \\
& =\sum_{i} \sum_{j} \sum_{k} P(i, j, k) f_{i j} f_{i k} \\
& =p^{3} f_{11}^{2}+(1-p)^{3} f_{22}^{2}+p(1-p) f_{12}^{2}+2 p^{2}(1-p) f_{11} f_{12}+2 p(1-p)^{2} f_{22} f_{12} \\
& =K K_{O} \\
& =\lambda_{o} K K
\end{aligned}
$$

- λ will be lower for other unilineal relationships
- λ_{0} will be between 1.0 and λ_{Mz}

Point of Situation

- Probabilities of affected pairs for
- Unrelated Individuals
- Monozygotic Twins
- Parent-Offspring Pairs
- Each of these shares a fixed number of alleles IBD ...

For a single locus model...

$\lambda_{\text {IBD }=2}=\lambda_{M Z}$
$\lambda_{\text {IBD }=1}=\lambda_{O}$
$\lambda_{\text {IBD }=0}=1$
$K_{I B D=2}=K_{M Z}$
$K_{\text {IBD }=1}=K_{O}$
$K_{\text {IBD }=0}=1$

- Model ignores contribution of other genes and environment

Simple model that allows for useful predictions

- Risk to half-siblings
- Risk to cousins
- Risk to siblings

Affected Half-Siblings

- IBD sharing
- 0 alleles with probability 50%
- 1 allele with probability 50%

This gives ...

$$
\begin{gathered}
\lambda_{H}=1 / 2 \lambda_{O}+1 / 2=1 / 2\left(\lambda_{O}+1\right) \\
K_{H}=1 / 2 K_{O}+1 / 2 K=1 / 2\left(K_{O}+K\right)
\end{gathered}
$$

Uni-lineal Relationships

$$
\begin{gathered}
\lambda_{R}=P(I B D=1 \mid R) \lambda_{O}+P(I B D=0 \mid R) \\
K_{R}=P(I B D=1 \mid R) K_{O}+P(I B D=0 \mid R) K
\end{gathered}
$$

$P(I B D=1)$ decreases 50% with
increasing degree of relationship
($\lambda_{R}-1$) also decreases 50% with increasing degree of unilineal relationship

Affected Sibpairs

- IBD sharing ...
- 0 alleles with probability 25%
- 1 alleles with probability 50%
- 2 alleles with probability 25\%
- This gives ...
$\lambda_{S}=1 / 4 \lambda_{M Z}+1 / 2 \lambda_{O}+1 / 4=1 / 4\left(\lambda_{M Z}+2 \lambda_{O}+1\right)$
which implies
$\lambda_{M Z}=4 \lambda_{S}-2 \lambda_{O}-1$

Examples: Full Penetrance

Recessive							
p	f11	f12	f22	K	Lambdas		
					MZ	Offspring	Sibling
0.001	0	0	1	0.000001	1000000	1000	250500
0.01	0	0	1	0.0001	10000	100	2550
0.1	0	0	1	0.01	100	10	30

Dominant

\mathbf{p}	$\mathbf{f 1 1}$	$\mathbf{f 1 2}$	$\mathbf{f 2 2}$	K							Lambdas		
0.001	0	1	1	0.002	500.25	Offspring	Sibling						
0.01	0	1	1	0.02	50.25	25.50	250.56						
0.1	0	1	1	0.19	5.26	3.02	3.08						

Examples: Incomplete Penetrance

Recessive

				Lambdas				
\mathbf{p}	f11	f12	f22	K		MZ	Offspring	Sibling
0.001	0.001	0.001	1	0.001	2.0	1.0	1.2	
0.01	0.001	0.001	1	0.001	83.5	1.8	22.0	
0.1	0.001	0.001	1	0.01		82.8	8.4	25.2

Dominant

				Lambdas				
p	f11	f12	f22	K		MZ	Offspring	Sibling
0.001	0.001	1	1	0.003	223	112	112	
0.01	0.001	1	1	0.02	46	23	23	
0.1	0.001	1	1	0.19	5	3	3	

Examples: Small Effects

Smaller Effects

| | | | | | Lambdas | | |
| :---: | :---: | :---: | :---: | :---: | ---: | ---: | ---: | ---: |
| \mathbf{p} | f11 | f12 | f22 | K | MZ | Offspring | Sibling |
| 0.1 | 0.01 | 0.02 | 0.04 | 0.012 | 1.2 | 1.1 | 1.1 |
| 0.1 | 0.01 | 0.08 | 0.16 | 0.024 | 2.6 | 1.8 | 1.8 |
| 0.1 | 0.02 | 0.16 | 0.32 | 0.048 | 2.6 | 1.8 | 1.8 |
| 0.2 | 0.01 | 0.02 | 0.04 | 0.014 | 1.2 | 1.1 | 1.1 |
| 0.2 | 0.01 | 0.08 | 0.16 | 0.038 | 2.1 | 1.6 | 1.6 |
| 0.2 | 0.02 | 0.16 | 0.32 | 0.08 | 2.1 | 1.6 | 1.6 |

Multiple susceptibility loci...

- λ are upper bound on effect size for one locus
- λ decay rapidly for distant relatives
- If genes act multiplicatively, we can multiply marginal λ together

Another interpretation...

$\lambda_{\text {IBD }=2}=\lambda_{M Z}=\frac{P(\text { affected } \mid I B D=2 \text { with affected relative })}{P(\text { affected })}$

$$
\lambda_{I B D=1}=\lambda_{O}=\frac{P(\text { affected } \mid I B D=1 \text { with affected relative })}{P(\text { affected })}
$$

$$
\lambda_{I B D=0}=1=\frac{P(\text { affected } \mid I B D=0 \text { with affected relative })}{P(\text { affected })}
$$

Bayes' Theorem:
 Predicting IBD Sharing

$P(I B D=i \mid$ affected pair $)=$

$$
\begin{aligned}
& =\frac{P(I B D=i) P(\text { affected pair } \mid I B D=i)}{\sum_{j} P(I B D=j) P(\text { affected pair } \mid I B D=j)} \\
& =\frac{\lambda_{I B D=i}}{\sum_{j} P(I B D=j) \lambda_{I B D=i}}
\end{aligned}
$$

Sibpairs

Expected Values for z_{0}, z_{1}, z_{2}

$$
\begin{aligned}
& \mathrm{z}_{0}=0.25 \frac{1}{\lambda_{s}} \\
& \mathrm{Z}_{1}=0.50 \frac{\lambda_{o}}{\lambda_{\mathrm{s}}} \\
& \mathrm{z}_{2}=0.25 \frac{\lambda_{\mathrm{MZ}}}{\lambda_{\mathrm{s}}}
\end{aligned}
$$

$1 \leq \lambda_{o} \leq \lambda_{s} \leq \lambda_{M Z}$ for any genetic model

Maximum LOD Score (MLS)

- Powerful test for genetic linkage
- Likelihood model for IBD sharing
- Accommodates partially informative families
- MLEs for IBD sharing proportions
- Can be calculated using an E-M algorithm
- Shortcoming:
- Sharing estimates may be implausible

Possible Triangle

Possible Triangle

Intuition

- Under the null
- True parameter values are ($1 / 4,1 / 2,1 / 4$)
- Estimates will wobble around this point
- Under the alternative
- True parameter values are within triangle
- Estimates will wobble around true point

Idea (Holmans, 1993)

Testing for linkage

- Do IBD patterns suggest a gene is present?
- Focus on situations where IBD patterns are compatible with a genetic model
- Restrict maximization to possible triangle

The possible triangle method

1. Estimate $\mathbf{z}_{0}, \mathbf{z}_{1}, \mathbf{z}_{2}$ without restrictions
2. If estimate of $z_{1}>1 / 2$ then \ldots
a) Repeat estimation with $z_{1}=1 / 2$
b) If this gives $z_{0}>1 / 4$ then revert to null (MLS=0)
3. If estimates imply $2 z_{0}>z_{1}$ then ...
a) Repeat estimation with $z_{1}=2 z_{0}$
b) If this gives $z_{0}>1 / 4$ then revert to null (MLS=0)
4. Otherwise, leave estimates unchanged.

Possible Triangle

Holman's Example:

IBD	Pairs
0	8
1	60
2	32

MLS = 4.22 (overall)
MLE $=(0.08,0.60,0.32)$
MLS $=3.35$ (triangle)
MLE $=(0.10,0.50,0.40)$

MLS Combined With Possible Triangle

- Under null, true \mathbf{z} is a corner of the triangle
- Estimates will often lie outside triangle
- Restriction to the triangle decreases MLS
- MLS threshold for fixed type I error decreases
- Under alternative, true \mathbf{z} is within triangle
- Estimates will lie outside triangle less often
- MLS decreases less
- Overall, power should be increased

Example

- Type I error rate of 0.001
- LOD of 3.0 with unrestricted method
- Risch (1990)
- LOD of 2.3 with possible triangle constraint
- Holmans (1993)
- For some cases, almost doubles power

Recommended Reading

- Holmans (1993)

Asymptotic Properties of
Affected-Sib-Pair Linkage Analysis
Am J Hum Genet 52:362-374

- Introduces possible triangle constraint
- Good review of MLS method

Reference

- Risch (1990)

Linkage strategies for genetically complex traits. I. Multi-locus models. Am. J. Hum. Genet. 46:222-228

- Recurrence risks for relatives.
- Examines implications of multi-locus models.

