Multipoint Analysis for Sibling Pairs

Biostatistics 666
Lecture 18

Previously ...

- Linkage analysis with pairs of individuals
- "Non-parametric" IBS Methods
- "Maximum Likelihood" IBD Based Method
- Possible Triangle Constraint

ASP Methods Covered So Far ...

- Increasing degrees of sophistication and complexity
- In each case, only a single marker is evaluated...

IBS Based Linkage Test

$$
\begin{aligned}
& \chi_{2 d f}^{2}=\sum_{i} \frac{\left[N_{I B S=i}-E\left(N_{\text {IBS } i}\right)\right]^{2}}{E\left(N_{I B S=i}\right)} \\
& L O D=\frac{\chi^{2}}{2 \ln 10}
\end{aligned}
$$

- Expect counts calculated using:
- Allele frequencies for marker
- Relationship for affected individuals

Likelihood for a Single ASP

$$
L_{i}=\sum_{j=0}^{2} P(I B D=j \mid A S P) P(\text { Genotypes } \mid \text { IBD }=j)=\sum_{j=0}^{2} z_{j} w_{i j}
$$

Risch (1990) defines

$$
w_{i j}=P\left(\text { Genotypes }_{i} \mid I B D=j\right)
$$

We only need proportionate $w_{i j}$

MLS Linkage Test

$$
\begin{aligned}
& L\left(z_{0}, z_{1}, z_{2}\right)=\prod_{i} \sum_{j} z_{j} w_{i j} \\
& L O D=\log _{10} \prod_{i} \frac{z_{0} w_{i 0}+z_{1} w_{i 1}+z_{2} w_{i 2}}{1 / w_{i 0}+1 / 2 w_{i 1}+1 / 4 w_{i 2}}
\end{aligned}
$$

The MLS statistic is the LOD evaluated at the MLEs of $\mathrm{z}_{0}, \mathrm{z}_{1}, \mathrm{z}_{2}$

Possible Triangle Constraint

- For any genetic model, we expect ASPs to be more similar than unselected pairs of siblings.
- More precisely, Holmans (1993) showed that for any genetic model
${ }^{-} z_{2} \geq 1 / 4$
- $z_{1} \leq 1 / 2$ and $z_{1} \geq 2 z_{0}$
- $\mathrm{Z}_{0} \leq 1 / 4$

Further Improvements ...

- All these methods lose information when a marker is uninformative in a particular family...

Today, we will see how to use neighboring markers to extract more information about IBD.

Intuition For Multipoint Analysis

- IBD changes infrequently along the chromosome
- Neighboring markers can help resolve ambiguities about IBD sharing
- In the Risch approach, they might ensure that, effectively, only one w is non-zero

Today...

- Framework for multipoint calculations
- First, likelihood of genotypes for series of markers
- Discuss application to the MLS linkage test
- Later, we will use it for useful applications such as error detection and relationship inference
- Refresher on IBD probabilities
- Using a Markov Chain to speed analyses

Ingredients

One ingredient will be the observed genotypes at each marker ...

Ingredients

Another ingredient will be the possible IBD states at each marker ...

Ingredients

The final ingredient connects IBD states along the chromosome ...

The Likelihood of Marker Data

$L=\sum_{I_{1}} \sum_{I_{2}} \cdots \sum_{I_{M}} P\left(I_{1}\right) \prod_{i=2}^{M} P\left(I_{i} \mid I_{i-1}\right) \prod_{i=1}^{M} P\left(X_{i} \mid I_{i}\right)$

- General, but slow unless there are only a few markers.
- Combined with Bayes' Theorem can estimate probability of each IBD state at any marker.

The Ingredients ...

- Probability of observed genotypes at each marker conditional on IBD state
- Probability of changes in IBD state along chromosome
- Hidden Markov Model

$$
\mathrm{P}\left(\mathrm{I}_{1}\right)
$$

Prior Probability of IBD States

IBD Probabilities

- Number of alleles identical by descent
- For sibling pairs, must be:
- 0
- 1
- 2
- Not always determined by marker data

$P\left(X_{i} \mid I_{i}\right)$

Probability of Observed Genotypes, Given IBD State

$P\left(X_{m} \mid I_{m}\right)$

Sib	CoSib	IBD		
		0	1	2
(a,b)	(c,d)	$4 \mathrm{p}_{\mathrm{a}} \mathrm{p}_{\mathrm{b}} \mathrm{p}_{\mathrm{c}} \mathrm{p}_{\mathrm{d}}$	0	0
(a,a)	(b,c)	$2 \mathrm{pa}^{2} \mathrm{P}_{\mathrm{b}} \mathrm{p}_{\mathrm{c}}$	0	0
(a,a)	(b,b)	$\mathrm{pa}^{2} \mathrm{p}_{\mathrm{b}}{ }^{2}$	0	0
(a,b)	(a,c)	$4 \mathrm{p}_{\mathrm{a}}{ }^{2} \mathrm{p}_{\mathrm{b}} \mathrm{P}_{\mathrm{c}}$	$\mathrm{pa}_{\mathrm{a}} \mathrm{P}_{\mathrm{b}} \mathrm{P}_{\mathrm{c}}$	0
(a,a)	(a,b)	$2 \mathrm{pa}^{3} \mathrm{p}_{\mathrm{b}}$		0
(a,b)	(a,b)	$4 \mathrm{pa}^{2} \mathrm{p}_{4}{ }^{2}$	$\left(\mathrm{papb}{ }^{2}+\mathrm{p}_{\mathrm{a}}{ }^{2} \mathrm{p}_{\mathrm{b}}\right)$	
(a,a)	(a, a)	pa^{4}	Pa^{3}	pa^{2}
Prior Probability		1/4	1/2	1/4

Note: Assuming unordered genotypes

Question:
 What to do about missing data?

- What happens when some genotype data is unavailable?

$$
P\left(I_{i+1} \mid I_{i}\right)
$$

Model for Transitions in IBD Along Chromosome

$P\left(I_{m+1} \mid I_{m}\right)$

- Depends on recombination fraction θ
- This is a measure of distance between two loci
- Probability grand-parental origin of alleles changes between loci
- Naturally, leads to probability of change in IBD:

$$
\psi=2 \theta(1-\theta)
$$

$P\left(I_{m+1} \mid I_{m}\right)$

		IBD State at $\mathrm{m}+1$		
		0	1	2
IBD state	0	$(1-\psi)^{2}$	$2 \psi(1-\psi)$	ψ^{2}
at marker	1	$\psi(1-\psi)$	$(1-\psi)^{2}+\psi^{2}$	$\psi(1-\psi)$
m	2	ψ^{2}	$2 \psi(1-\psi)$	$(1-\psi)^{2}$

$$
\psi=2 \theta(1-\theta)
$$

$P\left(I_{1}\right)$
$P\left(X_{i} \|_{i}\right)$
$P\left(I_{i+1} \|_{i}\right)$

All the Ingredients!

Example

- Consider two loci separated by $\theta=0.1$
- Each loci has two alleles, each with frequency .50
- If two siblings have the following genotypes:
Sib1 Sib2
- Marker A: 1/1 2/2
- Marker B: 1/1 1/1
- What is the probability of IBD=2 at marker B when...
- You consider marker B alone?
- You consider both markers simultaneously?

The Likelihood of Marker Data

$L=\sum_{I_{1}} \sum_{I_{2}} \cdots \sum_{I_{M}} P\left(I_{1}\right) \prod_{i=2}^{M} P\left(I_{i} \mid I_{i-1}\right) \prod_{i=1}^{M} P\left(X_{i} \mid I_{i}\right)$

- General, but slow unless there are only a few markers.
- How do we speed things up?

A Markov Model

- Re-organize the computation slightly, to avoid evaluating nested sum directly
- Three components:
- Probability considering a single location
- Probability including left flanking markers
- Probability including right flanking markers
- Scale of computation increases linearly with number of markers

A Markov Rearrangement ...

$\operatorname{LEFT}_{1}(j)=P(I B D=j) P\left(X_{1} \mid I_{1}=j\right)$
$\operatorname{LEFT}_{i+1}(j)=\sum_{k=0,1,2} L E F T_{i}(k) P\left(I_{i+1}=j \mid I_{i}=k\right) P\left(X_{i+1} \mid I_{i+1}=j\right)$

$$
L=\sum_{k=0,1,2} L E F T_{\text {last }}(k)
$$

- Using this arrangement, we calculate the likelihood by:
- Evaluating LEFT function at the first position
- Evaluating LEFT function along chromosome
- Each time, re-using results from the previous position only
- Required effort increases linearly with number of markers
- Final summation gives overall likelihood

Improvements ...

The previous arrangement, quickly gives the likelihood for any number of markers

- A more flexible arrangement would allow us to quickly calculate conditional IBD probabilities along chromosome...

A More Flexible Arrangement...

- Single Marker
- Left Conditional

- Right Conditional
- Full Likelihood

The Likelihood of Marker Data

$$
\begin{aligned}
L & =\sum_{I_{j}} P\left(I_{j}\right) P\left(X_{j} \mid I_{j}\right) P\left(X_{1} \ldots X_{j-1} \mid I_{j}\right) P\left(X_{j+1} \ldots X_{M} \mid I_{j}\right) \\
& =\sum_{I_{j}} P\left(I_{j}\right) P\left(X_{j} \mid I_{j}\right) L_{j}\left(I_{j}\right) R_{j}\left(I_{j}\right)
\end{aligned}
$$

- A different arrangement of the same likelihood
- The nested summations are now hidden inside the L_{j} and R_{j} functions...

Left-Chain Probabilities

$L_{m}\left(I_{m}\right)=P\left(X_{1}, \ldots, X_{m-1} \mid I_{m}\right)$
$=\sum_{I_{m-1}} L_{m-1}\left(I_{m-1}\right) P\left(X_{m-1} \mid I_{m-1}\right) P\left(I_{m-1} \mid I_{m}\right)$
$L_{1}\left(I_{1}\right)=1$

- Proceed one marker at a time.
- Computation cost increases linearly with number of markers.

Right-Chain Probabilities

$$
\begin{aligned}
R_{m}\left(I_{m}\right) & =P\left(X_{m+1}, \ldots, X_{M} \mid I_{m}\right) \\
& =\sum_{I_{m+1}} R_{m+1}\left(I_{m+1}\right) P\left(X_{m+1} \mid I_{m+1}\right) P\left(I_{m+1} \mid I_{m}\right)
\end{aligned}
$$

$$
R_{M}\left(I_{M}\right)=1
$$

- Proceed one marker at a time.
- Computation cost increases linearly with number of markers.

Extending the MLS Method ...

$$
\begin{aligned}
w_{j} & =P\left(X_{j} \mid I_{j}\right) P\left(X_{1} \ldots X_{j-1} \mid I_{j}\right) P\left(X_{j+1} \ldots X_{M} \mid I_{j}\right) \\
& =P\left(X_{j} \mid I_{j}\right) L_{j}\left(I_{j}\right) R_{j}\left(I_{j}\right)
\end{aligned}
$$

- We just change the definition for the "weights" given to each configuration!

Some Extensions We'll Discuss

- Modeling error
- What components might have to change?
- Modeling other types of relatives
- What components might have to change?
- Modeling larger pedigrees

Today

- Efficient computational framework for multipoint analysis of sibling pairs

