Multipoint Analysis for Sibling Pairs

Biostatistics 666 Lecture 18

IBS Based Linkage Test

$$\chi^{2}_{2df} = \sum_{i} \frac{\left[N_{IBS=i} - E(N_{IBS=i})\right]^{2}}{E(N_{IBS=i})}$$
$$LOD = \frac{\chi^{2}}{2\ln 10}$$

- Expect counts calculated using:
 - Allele frequencies for marker
 - Relationship for affected individuals

Likelihood for a Single ASP

$$L_{i} = \sum_{j=0}^{2} P(IBD = j \mid ASP) P(Genotypes \mid IBD = j) = \sum_{j=0}^{2} z_{j} w_{ij}$$

Risch (1990) defines

 $w_{ij} = P(Genotypes_i | IBD = j)$

We only need proportionate W_{ij}

MLS Linkage Test

$$L(z_0, z_1, z_2) = \prod_i \sum_j z_j w_{ij}$$

$$LOD = \log_{10} \prod_{i} \frac{z_0 w_{i0} + z_1 w_{i1} + z_2 w_{i2}}{\frac{1}{4} w_{i0} + \frac{1}{2} w_{i1} + \frac{1}{4} w_{i2}}$$

The MLS statistic is the LOD evaluated at the MLEs of z_0, z_1, z_2

Possible Triangle Constraint

- For any genetic model, we expect ASPs to be more similar than unselected pairs of siblings.
- More precisely, Holmans (1993) showed that for any genetic model
 - $Z_2 \ge \frac{1}{4}$
 - $z_1 \le \frac{1}{2}$ and $z_1 \ge 2 z_0$
 - $z_0 \le \frac{1}{4}$

Further Improvements ...

- All these methods lose information when a marker is uninformative in a particular family...
- Today, we will see how to use neighboring markers to extract more information about IBD.

Intuition For Multipoint Analysis

- IBD changes infrequently along the chromosome
- Neighboring markers can help resolve ambiguities about IBD sharing
- In the Risch approach, they might ensure that, effectively, only one w is non-zero

Today ...

- Framework for multipoint calculations
 - First, likelihood of genotypes for series of markers
 - Discuss application to the MLS linkage test
 - Later, we will use it for useful applications such as error detection and relationship inference
- Refresher on IBD probabilities
- Using a Markov Chain to speed analyses

The Likelihood of Marker Data

$$L = \sum_{I_1} \sum_{I_2} \dots \sum_{I_M} P(I_1) \prod_{i=2}^M P(I_i \mid I_{i-1}) \prod_{i=1}^M P(X_i \mid I_i)$$

- General, but slow unless there are only a few markers.
- Combined with Bayes' Theorem can estimate probability of each IBD state at any marker.

The Ingredients ...

- Probability of observed genotypes at each marker conditional on IBD state
- Probability of changes in IBD state along chromosome
 - Hidden Markov Model

$P(X_i \mid I_i)$

Probability of Observed Genotypes, Given IBD State

P (X_m | I_m)

	-		IBD	
Sib	CoSib	0	1	2
(a,b)	(c,d)	$4p_ap_bp_cp_d$	0	0
(a,a)	(b,c)	$2p_a^2p_bp_c$	0	0
(a,a)	(b,b)	$p_{a}^{2}p_{b}^{2}$	0	0
(a,b)	(a,c)	$4p_a^2p_bp_c$	$p_a p_b p_c$	0
(a,a)	(a,b)	$2p_a^{3}p_b$	$p_a^2 p_b$	0
(a,b)	(a,b)	$4p_{a}^{2}p_{b}^{2}$	$(p_{a}p_{b}^{2}+p_{a}^{2}p_{b})$	$2p_ap_b$
(a,a)	(a,a)	p_a^4	p_a^3	p_a^2
Prior Probability		1/4	1/2	1/4

Question: What to do about missing data?

 What happens when some genotype data is unavailable?

Model for Transitions in IBD Along Chromosome

P(I_{m + 1} | **I**_m)

- Depends on recombination fraction θ
 - This is a measure of distance between two loci
 - Probability grand-parental origin of alleles changes between loci
- Naturally, leads to probability of change in IBD:

$$\psi = 2\theta(1-\theta)$$

$$\mathbf{P}(\mathbf{I}_{m+1} \mid \mathbf{I}_{m})$$

		IBD State at $m + 1$		
		0	1	2
IBD state	0	$(1-\psi)^2$	2ψ(1-ψ)	ψ^2
at marker	1	ψ(1-ψ)	$(1-\psi)^2+\psi^2$	ψ(1-ψ)
m	2	ψ^2	$2\psi(1-\psi)$	$(1-\psi)^2$

 $\psi=2\theta(1\!-\!\theta)$

Example

- Consider two loci separated by $\theta = 0.1$
- Each loci has two alleles, each with frequency .50
- If two siblings have the following genotypes:

	SID1	SIDZ
Marker A:	1/1	2/2
Marker B:	1/1	1/1

- What is the probability of IBD=2 at marker B when...
 - You consider marker B alone?
 - You consider both markers simultaneously?

The Likelihood of Marker Data

$$L = \sum_{I_1} \sum_{I_2} \dots \sum_{I_M} P(I_1) \prod_{i=2}^M P(I_i \mid I_{i-1}) \prod_{i=1}^M P(X_i \mid I_i)$$

- General, but slow unless there are only a few markers.
- How do we speed things up?

A Markov Model

Re-organize the computation slightly, to avoid evaluating nested sum directly

• Three components:

- Probability considering a single location
- Probability including left flanking markers
- Probability including right flanking markers
- Scale of computation increases linearly with number of markers

A Markov Rearrangement ...

 $LEFT_{1}(j) = P(IBD = j)P(X_{1} | I_{1} = j)$ $LEFT_{i+1}(j) = \sum_{k=0,1,2} LEFT_{i}(k)P(I_{i+1} = j | I_{i} = k)P(X_{i+1} | I_{i+1} = j)$ $L = \sum_{k=0,1,2} LEFT_{last}(k)$

- Using this arrangement, we calculate the likelihood by:
 - Evaluating LEFT function at the first position
 - Evaluating LEFT function along chromosome
 - Each time, re-using results from the previous position only
 - Required effort increases linearly with number of markers
 - Final summation gives overall likelihood

Improvements ...

- The previous arrangement, quickly gives the likelihood for any number of markers
- A more flexible arrangement would allow us to quickly calculate conditional IBD probabilities along chromosome...

A More Flexible Arrangement...

Single Marker

The Likelihood of Marker Data

$$L = \sum_{I_j} P(I_j) P(X_j | I_j) P(X_1 ... X_{j-1} | I_j) P(X_{j+1} ... X_M | I_j)$$

= $\sum_{I_j} P(I_j) P(X_j | I_j) L_j(I_j) R_j(I_j)$

- A different arrangement of the same likelihood
- The nested summations are now hidden inside the L_i and R_i functions...

Left-Chain Probabilities

$$\begin{split} L_m(I_m) &= P(X_1, \dots, X_{m-1} \mid I_m) \\ &= \sum_{I_{m-1}} L_{m-1}(I_{m-1}) P(X_{m-1} \mid I_{m-1}) P(I_{m-1} \mid I_m) \\ L_1(I_1) &= 1 \end{split}$$

- Proceed one marker at a time.
- Computation cost increases linearly with number of markers.

Right-Chain Probabilities

$$R_{m}(I_{m}) = P(X_{m+1}, ..., X_{M} | I_{m})$$

= $\sum_{I_{m+1}} R_{m+1}(I_{m+1})P(X_{m+1} | I_{m+1})P(I_{m+1} | I_{m})$

 $R_M(I_M) = 1$

- Proceed one marker at a time.
- Computation cost increases linearly with number of markers.

Extending the MLS Method ...

$$w_{j} = P(X_{j} | I_{j})P(X_{1}...X_{j-1} | I_{j})P(X_{j+1}...X_{M} | I_{j})$$
$$= P(X_{j} | I_{j})L_{j}(I_{j})R_{j}(I_{j})$$

 We just change the definition for the "weights" given to each configuration!

Some Extensions We'll Discuss

Modeling error

- What components might have to change?
- Modeling other types of relatives
 - What components might have to change?
- Modeling larger pedigrees

Today

 Efficient computational framework for multipoint analysis of sibling pairs