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Last Lecture:
Markov Model for Multipoint Analysis
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k IBD states along the chromosome are modeled using a Markov Chain/
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The Likelihood of Marker Data

L=ZZZ P(ll)HP(h | Ii—l)H PCXi [ 1;)

General, but slow unless there are only a few
markers.

Combined with Bayes’ Theorem allows us to
estimate probability of IBD states at any marker.
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Worked Example

Consider two loci separated by 6 = 0.1
Each loci has two alleles, each with frequency .50

If two siblings have the following genotypes:

Sib1 Sib2
Marker A: 1/1 2/2
Marker B: 1/1 1/1

What is the probability of IBD=2 at marker B when...

You consider marker B alone?
You consider both markers simultaneously?

/
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Solution

l; | P(l,) P(]11)  P(Xql)  PCX3lL) Prob

0 0 0.25 0.67 0.0625 0.0625 0.00066
0 1 0.25 0.30 0.0625 0.125 0.00058
0 2 0.25 0.03 0.0625 0.25 0.00013
1 0 0.5 0.15 0 0.0625 0.00000
1 1 0.5 0.70 0 0.125 0.00000
1 2 0.5 0.15 0 0.25 0.00000
2 0 0.25 0.03 0 0.0625 0.00000
2 1 0.25 0.30 0 0.125 0.00000
2 2 0.25 0.67 0 0.25 0.00000
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Solution

Taking into account all available genotype data...

P(l, = 2) = 0.09
P(l, = 1) = 0.42
P(l, = 0) = 0.49

Considering only one marker, the corresponding
probabilities would be 0.44, 0.44 and 0.11.

Quite a difference!, but which value do you expect to be

K more accurate? /
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The Likelihood of Marker Data
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General, but slow unless there are only a few
markers.

How do we speed things up?

L=>2" ZP(ll)HP(l ||.1)HF’(X [15)
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Extending the MLS Method ...
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Wj:P(Xj
:P(Xj

Ij)P(Xl"'Xj—ll Ij)P(Xj+1"'XM | Ij)
L ()R, (1)

We just change the definition for the “weights”
given to each configuration!
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Today ...

\_

Checking accuracy of reported relationships
Why is this an important problem?

Markov Chain for Different Relative Pairs
Likelihood approaches to relationship inference

/
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Verifying relationships is crucial

Genetic analyses require relationships to
be specified

Misspecifying relationships can lead to
tests of inappropriate size

Inflate Type | error

Decrease power

\_




Results

Our analysis of the pedigree structures by means of the
genotypes generated as part of the genome scan high-
lighted that, in each of the ethnic groups, there were
individuals identified as males that were likely to be fe-
males (and vice versa), half siblings labeled as full sib-
lings, and pedigree members that showed no relationship
to their supposed pedigree. Given that not all of the
parents were available for study, it was difficult to dis-
tinguish between parental errors and blood- or DNA-
sample mixups. In summary, 24.4% of the families
contained pedigree errors and 2.8% of the families con-
tained errors in which an individual appeared to be un-
related to the rest of the members of the pedigree and
were possibly blood-sample mixups. The percentages
were consistent across all ethnic groups. In total, 212
individuals were removed from the pedigrees to elimi-
nate these errors.

Genomewide Search for Type 2 Diabetes Susceptibility Genes

in Four American Populations

Margaret Gelder Ehm," Maha C. Kamoub,' Hakan Sakul,*" Kirby Gottschalk,'
Donald C. Holt," James L. Weber,* David Vaske,™ David Briley,' Linda Bri
Patrick scMillen,” Mpuyen,' Melanie Reisman,' Eric H. Lai,' Geoff Joslyn,™
Nancy S. Shepherd,’ Callum Bell,** Michael |. Wagner,' Daniel K. Burns," and

the American Diabetes Association GENNID iud!l,r

' Jan Kopf,'
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IBS Based Approach

Relative pairs will differ in terms of their
genetic similarity ...

One way to contrast different types of
relatives is to compare their overall
similarity, for example, by:
Calculating the mean IBS sharing
Calculating the variance of IBS sharing

\_ /
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Example...

~800 marker genome scan

Calculated IBS for each set of putative
relationships...

Unrelated pairs

Sibling pairs

Parent-offspring pairs
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Putative Unrelated Pairs

-~

IBS for Putative Unrelated Pairs
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Parent-Offspring Pairs

Frequency

IBS for Putative Parent Offspring Pairs
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Putative Sibling Pairs

IBS for Putative Sib Pairs

B Mean = 1.32
_ | St.Dev.=0.09
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Problem Individuals Are Outliers

IBS for Putative Sib Pairs
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Additional Information In
Standard Deviation of IBS Sharing

1.0

ﬁtandard Deviation of IBS Sharing

Mean IBS Sharing
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Additional Information In
Standard Deviation of IBS Sharing

4 Allele Sharing Quality Control

Anonymous Genome Scan -

1.0

Mean IBS Sharing /

ﬁtandard Deviation of IBS Sharing
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Problems with IBS Scores

\_

Inefficient
Ignore information on allele frequencies

Ignore correlations between neighboring
markers

... not too bad if large amounts of data
available

Cannot distinguish some types of relatives




Strategy:

\_

Information we have:

X — observed genotypes at each marker
p — allele frequencies at each marker

0 - recombination fraction between
consecutive markers

P(X|R) for each possible relationship R

unrelated, half-sib, sib-pairs, MZ twins

/
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Likelihood

~
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Sum over IBD states at each location

ly

Set of possible | changes with R

=3 S PTTPA LT TPOX 1)

/
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Notation
R Hypothesized Relationship
l.=(l..1,) Allele sharing at locus k
X, Genotype pair at locus k

& (JIR) = P(X;, X1 Xy 1, 1y = §[R)

Joint probability of data at first k-1 markers
and |IBD vector |, =] at marker k

/
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Detalls on |

\_

Possible inheritance patterns
(0,0) — no sharing

(1,0
(0,1
(1,1

)—s
)—S
)—s

nare maternal allele
nare paternal allele

nare both alleles

For convenience, separate IBD=1 into
maternal and paternal sharing states

/
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Algorithm for Likelihood Calculation

a,(J|R)=P(l;=J|R)
a,..(J|R) :Zak(i |R)P(X, [T, =Dt (1, ])

L:ZaM(j‘R)P(XM | Iy = J)

\_ /
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Relationship between | and R

Probability of 1,=(0,0), (1,0), (0,1) and (1,1):

MZ Twins (0,0,0,1)
Unrelated ?
Parent-Offspring ?

Full sibs (Ya, Va, Va, Va)
Maternal half sibs ("2, 72, 0, 0)

\ Paternal half sibs ? /




-~

P(X|l) for pairs

of individuals

GENOTYPE P(X,X,|1) for | =
Xy X, (0,00 (0,1) or (1,0) (1,1)
i i % % o2
i i 2pi°p; pi°p; 0
i i pi’p;° 0 0
i ik 2p:° PP« 0 0
i i 4pi°pi®  pip;(Pi+P;) 2pip;
i ik 4pi°pip« PiP;iPk 0
] ki 4pip;pP«P 0 0
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Transition Matrix

(Full Sibs)

~
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Transition Matrix
(Maternal Half Sibs)

(00) (L0 (01) (1)

00) [1-w) v 0 0
L0) | v (d-y) O O
(0,1) 0 0 0 O
1) [ O 0 0 0

v =20(1-0) r(, J) =, —J|

\ t, J) =l//r“’”(1—w)1—f<"i>j
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Transition Matrix
(Paternal Half Sibs)

(0,00 L0 (01 1)

00) [A-y) 0 v 0
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Transition Matrix (Unrelated)
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Transition Matrix (MZ twins)
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Example |

Consider genotypes for one marker
X, =11, 11)
Assume p, =.2, .50r.8

Calculate P(X|R) for each relationship
MZ twin, Full Sibs, Half-Sibs, Unrelated

/




Example Il

Consider genotypes for 2 markers
X, =(1/1, 2/2)
X, = (1/1, 2/2)

Assume p,=p,=72

Assume
0 =0.0528, v = 0.10
0 = 0.5000, v = 0.50

Calculate P(X]|R) for each relationship

/
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Simulations (6=.1, M=50)

0.00°
0.08"

Inferred R

True R  Full Sibs Half Sibs Unrelated
~ull Sibs 0.914 0.085
Half Sibs 0.044 0.872
Unrelated <.001 0.059

0.941
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Simulations ( 6=.2, M=50)

Inferred R
True R Full Sibs Half Sibs Unrelated
~ull Sibs 0.948 0.052 <.001
Half Sibs 0.038 0.899 0.064
Unrelated <.001 0.062 0.938

\_ /
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Simulations (06=.1, M=400)

Inferred R
True R Full Sibs Half Sibs Unrelated
Full Sibs 1.000 <.001 <.001
Half Sibs <.001 1.000 <.001

Unrelated <.001 <.001 1.000

\_ /
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Bayesian Approach

\_

Alternative to simply maximizing P(X|R=r)

Incorporates prior information on the expected
frequency of each relative pair...

Prior(R)P(X |[R =)
> Prior(R)P(X |R)

/

P(R=r]|X)=




More distant relationships
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Figure 1 Autosomal transition probabilities for grandparent-grandchild (GG, half-sib (HS), and avuncular (AV) pairs. Pilg,, = 1|1, =

Oy= Pll,,, = 0[I, = 1})is shown. Note that Pil, , =0/, =0=1-Pl,,, =1, =0 and Pil,,, =1|ll,=1)=1—- P, , =0]l,=1.L
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Problem ...

Consider some genome scan data
380 microsatellite markers

Consider some pair of individuals
Putative siblings

Observed Sharing
|dentical for 379/380 genotype pairs

L(G|R=MZ Twins) = 0
L(G|R=Any other) > 0

\_
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Solution:
Allow for Genotyping Errors

~

\_

A small proportion of errors could lead to
misclassification
Allow for possibly erroneous genotypes

€ — error rate parameter

P(Xi11})
:ZP(Xi 1G;,¢)P(G; 1)

:(]:_E)ZP(Gi =Xi| Ii)+[1_(1_8)2]P(Gi1 =Xi1)P(Gi, =X};)

/
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Conclusions

Likelihood approach provides reliable
manner to infer relationships

Can incorporate multiple linked markers

Some distant relationships can only be
discerned by likelihood approach
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Today

~
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Checking of Relationships for Pairs of
Individuals

Multipoint algorithm for calculating
likelihoods for genotype data
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Recommended Reading

Boehnke and Cox (1997), Am J Hum
Genet 61:423-429

Optional
Broman and Weber (1998), AJHG 63:1563-4
McPeek and Sun (2000), AJHG 66:1076-94
Epstein et al. (2000), AJHG 67:1219-31
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