The Lander-Green Algorithm

Biostatistics 666

Lecture 22

Last Lecture...
 Relationship Inferrence

- Likelihood of genotype data
- Adapt calculation to different relationships
- Siblings
- Half-Siblings
- Unrelated individuals
- Importance of modeling error

Today ...

The Lander-Green Algorithm

- Multipoint analysis in general pedigrees

The basis of modern pedigree analysis packages

Hidden Markov Model

IBD states form a Hidden Markov Chain along the chromosome ...

Fundamental Calculations

- Enumerate possible IBD states
- Transition probability for neighboring IBD states
- Probability of genotype data given IBD state

Lander-Green Algorithm

$$
L=\sum_{I_{1}} \cdots \sum_{I_{m}} P\left(I_{1}\right) \prod_{i=2}^{m} P\left(I_{i} \mid I_{i-1}\right) \prod_{i=1}^{m} P\left(X_{i} \mid I_{i}\right)
$$

- More general definition for I, the "IBD vector"
- Probability of genotypes given "IBD vector"
- Transition probabilities for the "IBD vectors"

Part I

"IBD Vectors"

Inheritance Vectors
Descent Graphs
Gene Flow Pattern

"IBD Vector" Specifications

- Specify IBD between all individuals
- Must be compact
- Must allow calculation of:
- Conditional probabilities for neighboring markers
- Probability of observed genotypes

"IBD Vector"

- Specify the outcome of each meiosis
- Which of the two parental alleles transmitted?
- Implies founder allele carried by each individual
- Implies whether a pair of chromosomes is identical-by-descent

For any pedigree, consider ...

- What are the meioses?
- What are the possible outcomes for the entire set of meioses?

Example...

What we are doing ...

- Listing meioses
- Alternating outcomes

The outcomes of all meioses define our "IBD vector"

Example ... Descent Graph

This is one representation of inheritance in the pedigree. The 8 founder alleles are labeled A-H and we their descent through the pedigree is specified when we fix the outcome of each meiosis.

So far ...

- A set of $2 n$ binary digits specifies IBD in a pedigree with n non-founders

There are $2^{2 n}$ such sets ...

- Next, must calculate the probability of the observed genotypes for each one...

Part II

Probability of Observed Genotypes

Founder Allele Graph
Founder Allele Frequencies

Founder Allele Graphs / Sets

- Calculated for each marker individually
- List of founder alleles compatible with:
${ }^{\circ}$ Observed genotypes for all individuals
- A particular gene flow pattern
- Likelihood of each set is a product of allele frequencies

Observed Genotypes

- For each family
- For each marker
- Some pattern of observed genotypes

Gene flow pattern

- In turn, specify gene flow throughout the pedigree
- For each individual, we know precisely what founder allele they carry

Combine the two...

- Conditional on gene flow...
- Founder allele states are restricted
- In this case, there is only one founder allele set: $\{1,1,1, ?\}$
- Likelihood is a product of allele frequencies
- P (allele 1$)^{3} P$ (any allele)

Finding founder allele sets

- Group founder alleles transmitted to the same genotyped individuals
- If a founder allele passes through an homozygote or different heterozygotes
- Its state is either fixed or impossible
- Fixes state of other alleles in the group

No. of Possible States for Grouped Founder Alleles

- No compatible states
- One Possible State
- If >1 founder allele passes through a person with a homozygous genotype or two heterozygous persons
- Two Possible States For Each Allele
- Observed genotypes are all identical and heterozygous
- Every marker allele is possible
- Founder alleles that are not passed to genotyped persons

Example:

Observed Genotypes

Example ...
 Descent Graph

Possible founder allele states...

Founder Alleles in Group	Corresponding Allele States	Probability
(B)	(any allele)	1
(A, C, E)	$(1,2,1)$ or $(2,1,2)$	$P(1)^{2} P(2)+P(2) P(1)^{2}$
(D, F, G, H)	$(1,2,3,4)$	$P(1) P(2) P(3) P(4)$

Lander-Green inheritance vector

- $2^{2 n}$ elements
- Meiotic outcomes specified in index bit
- Stores probability of genotypes for each set of meiotic outcomes

So far ...

- Generalized the "IBD vector"
- Probability of observed genotypes
- Next step: Transition probabilities
- HMM to combine information along the genome

Part III

Transition Probabilities

Recombination Fraction
Changes in IBD Along Chromosome

With one meiosis

$$
T=\left[\begin{array}{cc}
(1-\theta) & \theta \\
\theta & (1-\theta)
\end{array}\right]
$$

With two meioses

$$
T^{\otimes 2}=\left[\begin{array}{cc}
(1-\theta) T & \theta T \\
\theta T & (1-\theta) T
\end{array}\right]
$$

With two meioses

$$
T^{\otimes 2}=\left[\begin{array}{cccc}
(1-\theta)^{2} & (1-\theta) \theta & \theta(1-\theta) & \theta^{2} \\
(1-\theta) \theta & (1-\theta)^{2} & \theta^{2} & \theta(1-\theta) \\
\theta(1-\theta) & \theta^{2} & (1-\theta)^{2} & (1-\theta) \theta \\
\theta^{2} & \theta(1-\theta) & (1-\theta) \theta & (1-\theta)^{2}
\end{array}\right]
$$

With three meioses

$$
T^{\otimes 3}=\left[\begin{array}{cc}
(1-\theta) T^{\otimes 2} & \theta T^{\otimes 2} \\
\theta T^{\otimes 2} & (1-\theta) T^{\otimes 2}
\end{array}\right]
$$

With three meioses

$$
T^{\otimes 3}=\left[\begin{array}{cccccccc}
(1-\theta)^{3} & (1-\theta)^{2} \theta & (1-\theta)^{2} \theta & \theta^{2}(1-\theta) & (1-\theta)^{2} \theta & \theta^{2}(1-\theta) & \theta^{2}(1-\theta) & \theta^{3} \\
(1-\theta)^{2} \theta & (1-\theta)^{3} & \theta^{2}(1-\theta) & (1-\theta)^{2} \theta & \theta^{2}(1-\theta) & (1-\theta)^{2} \theta & \theta^{3} & \theta^{2}(1-\theta) \\
(1-\theta)^{2} \theta & \theta^{2}(1-\theta) & (1-\theta)^{3} & (1-\theta)^{2} \theta & \theta^{2}(1-\theta) & \theta^{3} & (1-\theta)^{2} \theta & \theta^{2}(1-\theta) \\
\theta^{2}(1-\theta) & (1-\theta)^{2} \theta & (1-\theta)^{2} \theta & (1-\theta)^{3} & \theta^{3} & \theta^{2}(1-\theta) & \theta^{2}(1-\theta) & (1-\theta)^{2} \theta \\
(1-\theta)^{2} \theta & \theta^{2}(1-\theta) & \theta^{2}(1-\theta) & \theta^{3} & (1-\theta)^{3} & (1-\theta)^{2} \theta & \theta^{2}(1-\theta) & (1-\theta)^{2} \theta \\
\theta^{2}(1-\theta) & (1-\theta)^{2} \theta & \theta^{3} & \theta^{2}(1-\theta) & (1-\theta)^{2} \theta & (1-\theta)^{3} & (1-\theta)^{2} \theta & \theta^{2}(1-\theta) \\
\theta^{2}(1-\theta) & \theta^{3} & (1-\theta)^{2} \theta & \theta^{2}(1-\theta) & \theta^{2}(1-\theta) & (1-\theta)^{2} \theta & (1-\theta)^{3} & (1-\theta)^{2} \theta \\
\theta^{3} & \theta^{2}(1-\theta) & \theta^{2}(1-\theta) & (1-\theta)^{2} \theta & (1-\theta)^{2} \theta & \theta^{2}(1-\theta) & (1-\theta)^{2} \theta & (1-\theta)^{3}
\end{array}\right]
$$

In general ...

- Transition matrix is patterned
- Transition probability depends on:
- No. of meiosis were outcome changed
- No. of meiosis were outcome did not change
- Product of powers of θ and $(1-\theta)$

Recursive Formulation

$$
T^{\otimes n+1}=\left[\begin{array}{cc}
(1-\theta) T^{\otimes n} & \theta T^{\otimes n} \\
\theta T^{\otimes n} & (1-\theta) T^{\otimes n}
\end{array}\right]
$$

Lander-Green Markov Model

Transition matrix $\mathbf{T}^{\otimes 2 n}$

$$
\begin{aligned}
& \mathbf{T}=\left[\begin{array}{cc}
1-\theta & \theta \\
\theta & 1-\theta
\end{array}\right] \\
& \mathbf{v}_{\ell \mid 1 . . \ell}=\mathbf{v}_{\ell-1 \mid 1 . . \ell-1} \mathbf{T}_{\otimes 2 n} \mathbf{v}_{\ell} \\
& \mathbf{v}_{\ell \mid \ldots . m}=\mathbf{v}_{\ell+1 \mid \ell+1 . . m} \mathbf{T}^{\otimes 2 n} \mathbf{v}_{\ell} \\
& \mathbf{v}_{\ell \mid 1 . . m}=\left(\mathbf{v}_{1 . . \ell-1} \mathbf{T}^{\otimes 2 n}\right) \circ \mathbf{v}_{\ell} \circ\left(\mathbf{v}_{\ell+1 . . m} \mathbf{T}^{\otimes 2 n}\right)
\end{aligned}
$$

All The Ingredients To ...

- Single Marker
- Left Conditional

- Right Conditional
- Fulltikelihood

Appropriate Problems

- Large number of markers
- Analysis of >5,000 markers possible
- Relatively small pedigrees
- 20-30 individuals
- $2 x$ larger pedigrees for the X chromosome. Why?

So far ...

- Key components for Lander-Green
- Extending definition of IBD vector
- Probability of genotypes given IBD
- Transition probabilities
- Next: Practical applications!

Lander-Green Algorithm

$$
L=\sum_{I_{1}} \cdots \sum_{I_{m}} P\left(I_{1}\right) \prod_{i=2}^{m} P\left(I_{i} \mid I_{i-1}\right) \prod_{i=1}^{m} P\left(X_{i} \mid I_{i}\right)
$$

- More general definition for I, the "IBD vector"
- Probability of genotypes given "IBD vector"
- Transition probabilities for the "IBD vectors"

Reading

- Historically, two key papers:
- Lander and Green (1987) PNAS 84:2363-7
- Kruglyak, Daly, Reeve-Daly, Lander (1996) Am J Hum Genet 58:1347-63

