The Elston-Stewart Algorithm

Biostatistics 666

Lecture 24

Scheduling - Important Dates

- Remaining Lectures, April 5, 7, 14
- Polio Symposium, April 12
- Rackham Auditorium, starts at 9:30
- Review Session, April 19
- Final Exam, April 27

Last Lecture

- The Lander Green Algorithm in practice
- Computational refinements
- Speeding up transitions
- Reducing inheritance space
- Non-parametric linkage analysis

Today ...

- Elston-Stewart Algorithm
- Another approach to pedigree likelihoods
- Can handle very large pedigrees
- Limited to a few markers
- Prelude to discussion of parametric linkage analysis

So far ...

- Studying linkage to complex diseases
- Multiple environmental factors
- Multiple genetic susceptibility factors
- Study affected sib pairs or small families
- Find regions of excess similarity among affected individuals

What about Mendelian traits?

- Diseases caused by a single genetic defect
- Typically, these are extremely rare
- Due to natural selection
- We don't need many families for mapping, but rather one or a few large families, where it is possible to track segregation of mutant alleles

Typical Family for Mapping Mendelian Trait...

I

II

III

The Problem

These families are typically too large for the Lander-Green algorithm

- Impractical to enumerate all potential inheritance graphs...
- Need an alternative formulation for the pedigree likelihood

Elements of Pedigree Likelihoods

- Prior Probabilities
- For founder genotypes
- Segregation probabilities
- For offspring genotypes, given parents
- Penetrances
- For individual phenotypes, given genotype

Prior Probabilities for Founders

- $P\left(G_{\text {founder }}\right)$
- Assume Hardy-Weinberg equilibrium
- Based on allele frequencies
- May be multilocus frequencies
- Typically, assuming linkage equilibrium

Segregation Probabilities

- $P\left(G_{o} \mid G_{f}, G_{m}\right)$
- Probability of offspring genotype conditional on parental genotypes
- Follows from Mendel's laws
- For multiple loci, the probability of offspring haplotypes conditional on parental haplotypes

Segregation Probabilities

- For multiple markers, use "haplo-genotypes"
- $P\left(G_{o} \mid G_{f}, G_{m}\right)$
- $G_{o}=\left(H_{01}, H_{o 2}\right)$
- $G_{f}=\left(H_{f 1}, H_{f 2}\right)$
- $G_{f}=\left(H_{m 1}, H_{m 2}\right)$
- $P\left(G_{o} \mid G_{f}, G_{m}\right)=$
$P\left(H_{o 1} \mid H_{f 1}, H_{f 2}\right) P\left(H_{o 2} \mid H_{m 1}, H_{m 2}\right)+$
$P\left(H_{o 2} \mid H_{f 1}, H_{f 2}\right) P\left(H_{o 1} \mid H_{m 1}, H_{m 2}\right)$

Penetrances

- $P\left(X_{i} \mid G_{i}\right)$
- Probability of observed phenotype conditional on genotype
- Generally, assume that phenotypes are independent within families

Overall Pedigree Likelihood

$$
L=\sum_{G_{1}} \cdots \sum_{G_{n}} \prod_{f} P\left(G_{f}\right) \prod_{\{0, f, m\}} P\left(G_{o} \mid G_{f}, G_{m}\right) \prod_{i} P\left(X_{i} \mid G_{i}\right)
$$

- Notice the three elements:
- Probability of founder genotypes
- Probability of children given parents
- Probability of phenotypes given genotypes

Simple Example...

Phenotypes are for the ABO locus

- Calculate:
- Likelihood for pedigree
- Likelihood conditional on alternative genotypes for I-1

Computationally ...

$$
L=\sum_{G_{1}} \cdots \sum_{G_{n}} \prod_{i} P\left(X_{i} \mid G_{i}\right) \prod_{\text {foumber }} P\left(G_{\text {founder } e}\right) \prod_{\{0, f, m\}} P\left(G_{o} \mid G_{f}, G_{m}\right)
$$

- Computation rises exponentially with \#people
- Computation rises exponentially with \#markers
- Challenge is summation over all possible genotypes (or haplotypes) for each individual

Typical calculation

- List all possible genotypes
- Create reduced lists
- Eliminate those where $P(X \mid G)=0$
- Eliminate those where $P\left(G_{o} \mid G_{f}, G_{m}\right)=0$
- Iterate over all possibilities

Example Pedigree

Iteration over All Genotypes

- 9 individuals
- 3 ABO alleles
- 6 possible genotypes
- Potential genotype sets
$6^{9}=10,077,696$

Condition on Phenotype

Person	Genotypes	\#Genotypes
I-1	\{AA, AO, BB, BO, AB, OO\}	6
I-2	\{OO\}	1
II-1	$\{\mathrm{AA}, \mathrm{AO}, \mathrm{BB}, \mathrm{BO}, \mathrm{AB}, \mathrm{OO}\}$	6
II-2	\{AA, AO\}	2
II-3	\{AA, AO\}	2
II-4	\{AA, AO\}	2
III-1	\{AA, AO\}	2
III-2	\{AB $\}$	1
III-3	$\{\mathrm{AA}, \mathrm{AO}\}$	2

1152 possibilities to consider

Condition on Family Members

Person	Genotypes	\#Genotypes
$I-1$	$\{A A, A O, A B\}$	3
$I-2$	$\{O O\}$	1
II-1	$\{B O, A B\}$	2
$I I-2$	$\{A O\}$	1
$I I-3$	$\{A O\}$	1
$I I-4$	$\{A A, A O\}$	2
III-1	$\{A A, A O\}$	2
III-2	$\{A B\}$	1
III-3	$\{A A, A O\}$	2

Simplification for Nuclear Families

$$
\begin{aligned}
& \begin{aligned}
L= & \sum_{G_{m}} P\left(X_{m} \mid G_{m}\right) P\left(G_{m}\right) \\
& \sum_{G_{f}} P\left(X_{f} \mid G_{f}\right) P\left(G_{f}\right)
\end{aligned} \\
& \prod_{o} \sum_{G_{o}} P\left(X_{o} \mid G_{o}\right) P\left(G_{o} \mid G_{m}, G_{f}\right)
\end{aligned}
$$

- Conditional on parental genotypes, offspring are independent
- Thus avoid nested sums, and produce likelihood whose cost increases linearly with the number of offspring

What about our large pedigree?

I

Elston and Stewart's (1971) insight...

- Focus on "special pedigrees" where
- Every person is either:
- Related to someone in the previous generation
- Marrying into the pedigree
- No consanguineous marriages
- Process nuclear families, by fixing the genotype for one parent ...

Successive Conditional Probabilities

- Starting at the bottom of the pedigree...
- Calculate conditional probabilities by fixing genotypes for one parent
- Specifically, calculate $H_{k}\left(G_{k}\right)$
- Probability of descendants and spouse for person k
- Conditional on a particular genotype G_{k}

Formulae ...

- So for each parent, calculate:

$$
\begin{aligned}
H_{\text {paren }}\left(G_{\text {paren }}\right)= & \sum_{G_{\text {spouse }}} P\left(X_{\text {spousel }} \mid G_{\text {spouse }}\right) P\left(G_{\text {spouse }}\right) \\
& \prod \sum\left(X_{o} \mid G_{o}\right) P\left(G_{o} \mid G_{\text {parene }} G_{\text {spouse }}\right) H_{o}\left(G_{o}\right)
\end{aligned}
$$

- By convention, for individuals with no descendants:

$$
H_{\text {leaf }}\left(G_{\text {leaf }}\right)=1
$$

Final Likelihood

- After processing all nuclear family units ...
- Simple sum gives the overall pedigree likelihood:
$L=\sum_{G_{\text {founder }}} P\left(X_{\text {founder }} \mid G_{\text {founder }}\right) H\left(G_{\text {founder }}\right) P\left(G_{\text {founder }}\right)$

Example Pedigree

Condition on Family Members

Person	Genotypes	\#Genotypes
$I-1$	$\{A A, A O, A B\}$	3
$I-2$	$\{O O\}$	1
II-1	$\{B O, A B\}$	2
$I I-2$	$\{A O\}$	1
$I I-3$	$\{A O\}$	1
$I I-4$	$\{A A, A O\}$	2
III-1	$\{A A, A O\}$	2
III-2	$\{A B\}$	1
III-3	$\{A A, A O\}$	2

Steps

- Conditional Probabilities at II-3
- Using phenotypes at II-4 and III-3
- Conditional Probabilities at II-2
- Using phenotypes for II-1, III-1 and III-2
- Conditional Probabilities at I-1 (or I-2)
- Using phenotypes for II-2 and II-3 and conditional probabilities for their descendants

Elston Stewart Applicability

- Potentially large pedigrees
${ }^{-}$But structure of the pedigree must be simple
- Only a little inbreeding can be accommodated
- Limited to a small number of markers
- Complexity exponential on number of markers

Today

- Elston Stewart Algorithm
- Alternative approach for pedigree analysis
- Can handle relative large pedigrees
- Implemented in the LINKAGE and FASTLINK computer packages

