Variance Components for Modeling Quantitative Traits

Biostatistics 666
Guest Lecturer Michael Boehnke

Today

- Analysis of quantitative traits
- Kinship coefficients
- measure of genetic similarity between two individuals
- Modeling covariance for pairs of individuals
- estimating heritability
- estimating locus-specific heritability
- Extending the model to larger pedigrees

Kinship Coefficients

- Summarize genetic similarity between pairs of individuals.

In a variance components model, they predict the phenotypic similarity between individuals.

Kinship Coefficients - Definition

- Given two individuals
- One with genes $\left(g_{i}, g_{j}\right)$
- The other with genes $\left(g_{k}, g_{l}\right)$
- The kinship coefficient is:
- $1 / 4 \mathrm{P}\left(\mathrm{g}_{\mathrm{i}}=\mathrm{g}_{\mathrm{k}}\right)+1 / 4 \mathrm{P}\left(\mathrm{g}_{\mathrm{i}}=\mathrm{g}_{\mathrm{l}}\right)+1 / 4 \mathrm{P}\left(\mathrm{g}_{\mathrm{j}}=\mathrm{g}_{\mathrm{k}}\right)+1 / 4 \mathrm{P}\left(\mathrm{g}_{\mathrm{j}}=\mathrm{g}_{\mathrm{l}}\right)$
- where " \equiv " represents identity by descent (IBD)
- Probability that two genes sampled at random from each individual are (IBD)

Some kinship coefficients

Siblings ($\varphi=1 / 4$)

Unrelated ($\varphi=0$)

Parent-Offspring
($\varphi=1 / 4$)

What about other relatives?

- For any two related individuals i and j ...
. ... use a recursive algorithm allows calculation of kinship coefficient
- Algorithm requires an order for individuals in the pedigree where ancestors precede descendants
- That is where for any $i>j, i$ is not ancestor of j
- Such an order always exists!

Computing Kinship Coefficients

- The recursive definition is then (for $\mathrm{i} \geq \mathrm{j}$):

$$
\varphi_{i j}=\left\{\begin{array}{cc}
0 & i \text { and } j \text { are founders } \\
1 / 2 & i=j, i \text { is a founder } \\
1 / 2\left(\varphi_{\text {mother }(i) j}+\varphi_{\text {father }(i) j}\right) & i \neq j \\
1 / 2\left(1+\varphi_{\text {mother }(i) f \text { father }(i)}\right) & i=j
\end{array}\right.
$$

An example pedigree...

- Can you find ...
- Suitable ordering for recursive calculation?
- Calculate kinship coefficient between shaded individuals?

So far ...

- Summarize genetic similarity between any two individuals ...
- Next, we will proceed to build a simple model for their phenotypes

Simplest Data Structure

- Pairs of related individuals
- Siblings (or twins!)
- Parent-Offspring
- Corresponding phenotype measurements
${ }^{\circ} \mathrm{y}=\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)^{\prime}$

Elements for a simple model ...

- If the trait is normally distributed ...
- Model mean and variance for \mathbf{y}_{1} and \mathbf{y}_{2}
- Mean and variance could be assumed equal ...
- ... or they could depend on some covariates
- But we are also interested in covariance between the two ...

Variance-Covariance Matrix

$\Omega=\left[\begin{array}{cc}V\left(y_{1}\right) & \operatorname{Cov}\left(y_{1}, y_{2}\right) \\ \operatorname{Cov}\left(y_{1}, y_{2}\right) & V\left(y_{2}\right)\end{array}\right]$

Model must describe not only variance of each observation but also covariance for pairs of observations

Bivariate density function

- Normal density function

$$
L(y)=\frac{1}{\sqrt{2 \pi}} \sigma^{-1} e^{-1 / 2(y-\mu)^{2} / \sigma^{2}}
$$

- Bivariate normal density function

$$
L(\mathbf{y})=\frac{1}{2 \pi}|\Omega|^{-1 / 2} e^{-1 / 2(\mathbf{y}-\mu)^{\prime} \Omega^{-1}(\mathbf{y}-\boldsymbol{\mu})}
$$

- Extends univariate density function

Intuition on Normal Densities

Bivariate Normal Densities

Possible Application...

In a sample of twin or sibling pairs, we could use all the data to estimate means, variances and even covariances...

(Data from David Duffy) ${ }_{6}$

Incorporating Kinship Coefficients

- If genes influence trait ...
- Covariance will differ for each class of relative pair
- Instead of estimating covariance for each relationship, ...
- Impose genetic model that incorporates kinship and relates covariance between different classes of relative pair

A Simple Model for the Variance-Covariance Matrix

$\Omega=\left[\begin{array}{cc}\sigma_{g}^{2}+\sigma_{e}^{2} & 2 \varphi \sigma_{g}^{2} \\ 2 \varphi \sigma_{g}^{2} & \sigma_{g}^{2}+\sigma_{e}^{2}\end{array}\right]$

Where,
φ is the kinship coefficient for the two individuals

Example...

	\mathbf{N}	\mathbf{r}
MZ males	292	.80
MZ females	380	.80
DZ males	179	.47
DZ females	184	.55
DZ male-female	284	.41

(Reading ability scores from Eaves et al., 1997)

Interpretation...

- Fitting a maximum likelihood model...
- Eaves et. al estimated
- $\sigma_{g}{ }^{2}=.81$
- $\sigma_{\mathrm{e}}{ }^{2}=.19$
- Found no evidence for sex differences
- Saturated model did not improve fit

Height in DZ and MZ twins

(How would you interpret these data from David @uffy?)

So far ...

- Model allows us to estimate the genetic contribution to the variation in any trait
- Incorporates different relative pairs ...
- But it doesn't always fit...
- Fortunately, the model can be easily refined

Another Example...

	\mathbf{N}	\mathbf{r}
MZ males	271	.56
MZ females	353	.52
DZ males	167	.33
DZ females	165	.45
DZ male-female	260	.41

(Psychomotor retardation scores from Eaves et al., 1997)

Refined Matrix

$\Omega=\left[\begin{array}{cc}\sigma_{g}^{2}+\sigma_{c}^{2}+\sigma_{e}^{2} & 2 \varphi \sigma_{g}^{2}+\sigma_{c}^{2} \\ 2 \varphi \sigma_{g}^{2}+\sigma_{c}^{2} & \sigma_{g}^{2}+\sigma_{c}^{2}+\sigma_{e}^{2}\end{array}\right]$

Where,
φ is the kinship coefficient for the two individuals

Interpretation...

- Fitting a maximum likelihood model...
- Eaves et. al estimated (for males)
- $\sigma_{g}{ }^{2}=.29$
- $\sigma_{\mathrm{c}}{ }^{2}=.24$
- $\sigma_{\mathrm{e}}{ }^{2}=.46$
- Additive genetic effects could not explain similarities. Any idea why?

Incorporating IBD Coefficients

- Covariance might differ according to sharing at a particular locus
- If locus contains genes that influence the trait
- Again, impose a genetic model and estimate model parameters

Linkage

IBD 0

IBD 1

No Linkage

IBD 0

IBD 1

IBD 2

Relationship to IBD probabilities

- For non-inbred pair of relatives, marker or locus-specific kinship coefficients can be derived from IBD probabilities:

$$
\varphi_{\text {marker }}=1 / 4 P\left(I B D_{\text {marker }}=1\right)+1 / 2 P\left(I B D_{\text {marker }}=2\right)
$$

Variance-Covariance Matrix

$\Omega=\left[\begin{array}{cc}\sigma_{a}^{2}+\sigma_{g}^{2}+\sigma_{e}^{2} & 2 \varphi_{\text {marker }} \sigma_{a}^{2}+2 \varphi \sigma_{g}^{2} \\ 2 \varphi_{\text {marker }} \sigma_{a}^{2}+2 \varphi \sigma_{g}^{2} & \sigma_{a}^{2}+\sigma_{g}^{2}+\sigma_{e}^{2}\end{array}\right]$

Where,
φ is the kinship coefficient for the two individuals
$\varphi_{\text {marker }}$ depends on the number of alleles shared IBD

Likelihood function, Incorporating Uncertain IBD

$$
\begin{aligned}
L & =\prod_{i} \sum_{j=0,1,2} Z_{i j}(2 \pi)^{-1}\left|\Omega_{[B D=j}\right|^{-1 / 2} e^{-1 / 2(y-\mu) \Omega_{B D=-1}^{-1}=(Y-\mu)} \\
& \approx \prod_{i}(2 \pi)^{-1}\left|\Omega^{*}\right|^{-1 / 2} e^{-1 /(y-\mu)\left(\Omega^{-1}(\underline{-1}(-\mu)\right.}
\end{aligned}
$$

$Z_{i j}=P\left(I B D_{i}=j \mid\right.$ marker data $)$ IBD sharing probabilities
$\Omega^{*}=\sum_{j=0,1,2} Z_{i j} \Omega_{I B D=j}$
"Expected" Ω

How it works ...

- To find linkage to a particular trait...
- Collect sibling pair sample
- Calculate IBD for multiple points along genome
- Model covariance as a function of IBD sharing at each point

Example...

Estimated Major Gene Component

Example...

Likelihood Ratio Chisquare

So far ...

- Models for similarity between relative pairs
- Kinship coefficient used to estimate overall genetic effect
- Locus-specific coefficients used to detect genetic linkage

Extensions ...

The model extends gracefully to other settings:

- For larger pedigrees, we extend the covariance matrix

To model genetic association, we model specific means for each individual

Larger Pedigrees...

$\Omega_{j k}=\left\{\begin{array}{cc}\sigma_{a}^{2}+\sigma_{g}^{2}+\sigma_{e}^{2} & \text { if } j=k \\ 2 \varphi_{\text {marker }} \sigma_{a}^{2}+2 \varphi \sigma_{g}^{2} & \text { if } j \neq k\end{array}\right.$

Where,
φ is the kinship coefficient for the two individuals
$\varphi_{\text {marker }}$ depends on the number of alleles shared IBD
j and k index different individuals in the family

Multivariate density function

- Normal density function

$$
L(y)=(2 \pi)^{-1 / 2} \sigma^{-1} e^{-1 / 2(y-\mu)^{2} / \sigma^{2}}
$$

- Multivariate normal density function

$$
L(\mathbf{y})=2 \pi^{-n / 2}|\Omega|^{-1 / 2} e^{-1 / 2(y-\mu)^{\prime} \Omega^{-1}(y-\mu)}
$$

- Extends univariate density function

Means Model

Expected Phenotype
for Individual i
(e.g. expected weight)
Estimated effects for covariates (e.g. expected weight increases $1 \mathrm{~kg} / \mathrm{year}$ with age)

Measured Covariates for Individual i (e.g. age, sex, ...)

In addition to modeling variances and covariances, we can model the means

Simple Association Model

- Each copy of allele changes trait by a fixed amount
- Include covariate counting copies for allele of interest
- Evidence for association when $\mathrm{a} \neq 0$

$$
E\left(y_{i}\right)=\mu+a *[\text { number of copies of mutant allele }]
$$

$$
\mathrm{E}\left(\mathrm{y}_{\mathrm{i}}\right)=\mu+\beta_{X} X_{i}
$$

X is the number of copies for allele of interest.
β_{x} is the estimated effect of each copy (the additive genetic value).

Today

- Analysis of quantitative traits
- Kinship coefficients
- Measure of genetic similarity between two individuals
- Modeling covariance for pairs of individuals
- estimating heritability
- estimating locus-specific heritability
- Extending the model to larger pedigrees

Useful References

- Amos (1994)

Am J Hum Genet 54:535-543

- Hopper and Matthews (1982)

Ann Hum Genet 46:373-383

- Lange and Boehnke (1983)

Am J Med Genet 14:513-24

