1. Consider a population where allele frequencies differ between the sexes. Assume that there are equal numbers of males and females and that genotypes occur in Hardy-Weinberg proportions within each sex. Focus on a single di-allelic marker in this population. The marker has allele frequency \(p_M = p + \Delta \) in males and \(p_F = p - \Delta \) in females, where \(p = (p_F + p_M)/2 \).

 a) Calculate offspring genotype frequencies after one generation of random mating.

 b) How do genotype frequencies differ from those expected under Hardy-Weinberg equilibrium?

 c) How many additional generations are required before Hardy-Weinberg equilibrium is reached?

2. In a sample of 80 individuals, 75 homozygotes for allele A, 2 homozygotes for allele B and 3 heterozygotes were observed. Conditional on the number of observed A and B alleles, answer the following questions:

 a) What is the probability of this particular sample configuration?

 b) What is the probability of observing an equal or greater number of heterozygotes?

 c) What is the probability of observing a smaller number of heterozygotes?

 d) What is the chi-squared statistic for Hardy-Weinberg equilibrium?

3. Consider two loci in disequilibrium in a large population. Assume that the recombination fraction between the two loci is 0.01. In how many generations do you expect the disequilibrium coefficient \(D \) to be halved?

4. Consider the following set of haplotype frequencies:

 \[p_{AB} = 0.3, \; p_{AB} = 0.2; \; p_{aB} = 0.1; \; p_{ab} = 0.4 \]

 a) Calculate \(D \), \(D' \) and \(\Delta^2 \) between the two markers.

 b) What is the probability that allele A will be present in a chromosome that carries allele b?

 c) What is the maximum possible value of \(r^2 \) for this marker pair?