Biostatistics 666

Problem Set 1
Due Tuesday, January 24, 2005

1. Consider a population where allele frequencies differ between the sexes. Assume that there are equal numbers of males and females and that genotypes occur in HardyWeinberg proportions within each sex. Focus on a single di-allelic marker in this population. The marker has allele frequency $p_{M}=p+\Delta$ in males and $p_{F}=p-\Delta$ in females, where $p=\left(p_{F}+p_{M}\right) / 2$.
a) Calculate offspring genotype frequencies after one generation of random mating.
b) How do genotype frequencies differ from those expected under Hardy-Weinberg equilibrium?
c) How many additional generations are required before Hardy-Weinberg equilibrium is reached?
2. In a sample of 80 individuals, 75 homozygotes for allele $A, 2$ homozygotes for allele B and 3 heterozygotes were observed. Conditional on the number of observed A and B alleles, answer the following questions:
a) What is the probability of this particular sample configuration?
b) What is the probability of observing an equal or greater number of heterozygotes?
c) What is the probability of observing a smaller number of heterozygotes?
d) What is the chi-squared statistic for Hardy-Weinberg equilibrium?
3. Consider two loci in disequilibrium in a large population. Assume that the recombination fraction between the two loci is 0.01 . In how many generations do you expect the disequilibrium coefficient D to be halved?
4. Consider the following set of haplotype frequencies:

$$
\mathrm{p}_{\mathrm{AB}}=0.3, \mathrm{p}_{\mathrm{Ab}}=0.2 ; \mathrm{p}_{\mathrm{aB}}=0.1 ; \mathrm{p}_{\mathrm{ab}}=0.4
$$

a) Calculate $\mathrm{D}, \mathrm{D}^{\prime}$ and Δ^{2} between the two markers.
b) What is the probability that allele A will be present in a chromosome that carries allele b ?
c) What is the maximum possible value of r^{2} for this marker pair?

