Modeling Events in the Coalescent

1. Consider the genealogy of a set of three sequences from a population of $N = 2500$ diploid individuals. Assume that the recombination rate per sequence per generation is $r = 10^{-5}$ and the mutation rate is $\mu = 10^{-5}$ per sequence per generation.

When we move backwards in time by one generation, what is the probability of…

a) … a coalescence event?
b) … a mutation occurring?
c) … a recombination event occurring?
d) … one of these three events occurring?

In addition, calculate the following quantities …

e) Number of generations do you expect to pass before a), b) or c) occurs?
f) When one of these events occurs, what is the probability that it is a recombination?

Finally, …

g) Assume that the following events occur in order as we trace the ancestry of the three sequences: mutation (event closest to the present), coalescence, recombination, mutation, coalescence, coalescence (most distant event). Sketch out a genealogy for this sample.
The E-M Algorithm

1. In a study of the ACE gene, an Alu insertion deletion (I/D) and a nearby C/T single nucleotide polymorphism were genotyped in randomly sampled individuals. The following genotypic counts are found:

<table>
<thead>
<tr>
<th></th>
<th>C/C</th>
<th>C/T</th>
<th>T/T</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/I</td>
<td>25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I/D</td>
<td>40</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>D/D</td>
<td>15</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

a) Describe the E-M procedure for estimating two marker haplotype frequencies, including relevant equations.

b) Use the E-M algorithm to estimate haplotype frequencies p_{IC}, p_{IT}, p_{DC} and p_{DT} for the two markers.

c) Compare the likelihood of the observed counts assuming linkage equilibrium between markers and using the haplotype frequencies estimated by E-M. Comment on your result.

d) Estimate D' and Δ^2 for this marker pair.

e) Is there evidence for ancestral recombination between the I/D polymorphism and the C/T mutation in this population? Would the I/D polymorphism be a suitable surrogate for the C/T SNP in an association study?