
An Introduction to R

Biostatistics 615/815

Last Week
An Introduction to C

Strongly typed language
• Variable and function types set explicitly

Functional language
• Programs are a collection of functions

Rich set of program control options
•for, while, do …while, if statements

Compiling and debugging C programs

Homework Notes

Due on Wednesday (by end of the day)
• Dr. Abecasis' Departmental Mailbox
• Provide hard copy

Write specific answer to each question
• Text, supported by table or graph if appropriate

Source code
• Indented and commented, if appropriate

This Week

The R programming language
• Syntax and constructs
• Variable initializations
• Function declarations

Introduction to R Graphics Functionality
• Some useful functions

The R Project

Environment for statistical computing
and graphics
• Free software

Associated with simple programming
language
• Similar to S and S-plus

www.r-project.org

The R Project
Versions of R exist of Windows, MacOS, Linux
and various other Unix flavors

R was originally written by Ross Ihaka and
Robert Gentleman, at the University of
Auckland

It is an implementation of the S language,
which was principally developed by John
Chambers

On the shoulders of giants…

In 1998, the Association for Computing
Machinery gave John Chambers its
Software Award. His citation reads:

“S has forever altered the way people analyze,
visualize, and manipulate data ... It is an
elegant, widely accepted, and enduring
software system, with conceptual integrity.”

Compiled C vs Interpreted R

C requires a complete program to run
• Program is translated into machine code
• Can then be executed repeatedly

R can run interactively
• Statements converted to machine instructions as

they are encountered
• This is much more flexible, but also slower

R Function Libraries

Implement many common statistical
procedures

Provide excellent graphics functionality

A convenient starting point for many data
analysis projects

R Programming Language

Interpreted language

To start, we will review
• Syntax and common constructs

• Function definitions

• Commonly used functions

Interactive R

R defaults to an interactive mode

A prompt “>” is presented to users

Each input expression is evaluated…
… and a result returned

R as a Calculator
> 1 + 1 # Simple Arithmetic
[1] 2
> 2 + 3 * 4 # Operator precedence
[1] 14
> 3 ^ 2 # Exponentiation
[1] 9
> exp(1) # Basic mathematical functions are available
[1] 2.718282
> sqrt(10)
[1] 3.162278
> pi # The constant pi is predefined
[1] 3.141593
> 2*pi*6378 # Circumference of earth at equator (in km)
[1] 40074.16

Variables in R

Numeric
• Store floating point values

Boolean (T or F)
• Values corresponding to True or False

Strings
• Sequences of characters

Type determined automatically when variable
is created with "<-" operator

R as a Smart Calculator

> x <- 1 # Can define variables
> y <- 3 # using "<-" operator to set values
> z <- 4
> x * y * z
[1] 12

> X * Y * Z # Variable names are case sensitive
Error: Object "X" not found

> This.Year <- 2004 # Variable names can include period
> This.Year
[1] 2004

R does a lot more!

Definitely not just a calculator

R thrives on vectors

R has many built-in statistical and
graphing functions

R Vectors

A series of numbers

Created with
•c() to concatenate elements or sub-vectors
•rep() to repeat elements or patterns
•seq() or m:n to generate sequences

Most mathematical functions and operators can
be applied to vectors
• Without loops!

Defining Vectors
> rep(1,10) # repeats the number 1, 10 times
[1] 1 1 1 1 1 1 1 1 1 1
> seq(2,6) # sequence of integers between 2 and 6
[1] 2 3 4 5 6 # equivalent to 2:6
> seq(4,20,by=4) # Every 4th integer between 4 and 20
[1] 4 8 12 16 20
> x <- c(2,0,0,4) # Creates vector with elements 2,0,0,4
> y <- c(1,9,9,9)
> x + y # Sums elements of two vectors
[1] 3 9 9 13
> x * 4 # Multiplies elements
[1] 8 0 0 16
> sqrt(x) # Function applies to each element
[1] 1.41 0.00 0.00 2.00 # Returns vector

Accessing Vector Elements
Use the [] operator to select elements

To select specific elements:
• Use index or vector of indexes to identify them

To exclude specific elements:
• Negate index or vector of indexes

Alternative:
• Use vector of T and F values to select subset of elements

Accessing Vector Elements
> x <- c(2,0,0,4)
> x[1] # Select the first element, equivalent to x[c(1)]
[1] 2
> x[-1] # Exclude the first element
[1] 0 0 4
> x[1] <- 3 ; x
[1] 3 0 0 4
> x[-1] = 5 ; x
[1] 3 5 5 5
> y < 9 # Compares each element, returns result as vector
[1] TRUE FALSE FALSE FALSE
> y[4] = 1
> y < 9
[1] TRUE FALSE FALSE TRUE
> y[y<9] = 2 # Edits elements marked as TRUE in index vector
> y
[1] 2 9 9 2

Data Frames

Group a collection of related vectors

Most of the time, when data is loaded, it
will be organized in a data frame

Let’s look at an example …

Setting Up Data Sets

Load from a text file using read.table()
• Parameters header, sep, and na.strings control

useful options
•read.csv() and read.delim() have useful defaults

for comma or tab delimited files

Create from scratch using data.frame()
• Example:
data.frame(height=c(150,160),

weight=(65,72))

Blood Pressure Data Set
HEIGHT WEIGHT WAIST HIP BPSYS BPDIA
172 72 87 94 127.5 80
166 91 109 107 172.5 100
174 80 95 101 123 64
176 79 93 100 117 76
166 55 70 94 100 60
163 76 96 99 160 87.5
...

Read into R using:
bp <-

read.table(“bp.txt”,header=T,na.strings=c(“x”))

Accessing Data Frames

Multiple ways to retrieve columns…

The following all retrieve weight data:
•bp[“WEIGHT”]
•bp[,2]
•bp$WEIGHT

The following excludes weight data:
•bp[,-2]

Lists

Collections of related variables

Similar to records in C

Created with list function
•point <- list(x = 1, y = 1)

Access to components follows similar rules as for
data frames, the following all retrieve x:
•point$x; point[“x”]; point[1]; point[-2]

So Far …
Common Forms of Data in R

Variables are created as needed

Numeric values
Vectors
Data Frames
Lists

Used some simple functions:
•c(), seq(), read.table(), …

Next …

More detail on the R language, with a
focus on managing code execution

• Grouping expressions

• Controlling loops

Programming Constructs

Grouped Expressions
Control statements
•if … else …

•for loops
•repeat loops
•while loops

•next, break statements

Grouped Expressions

{expr_1; expr_2; … }

Valid wherever single expression could be
used

Return the result of last expression evaluated

Relatively similar to compound statements in C

if … else …

if (expr_1) expr_2 else expr_3

The first expression should return a
single logical value

• Operators && or || may be used

Conditional execution of code

Example: if … else …

Standardize observation i
if (sex[i] == “male”)
{
z[i] <- (observed[i] –
males.mean) / males.sd;
}

else

{
z[i] <- (observed[i] –

for

for (name in expr_1) expr_2

Name is the loop variable

expr_1 is often a sequence
• e.g. 1:20
• e.g. seq(1, 20, by = 2)

Example: for

Sample M random pairings in a set of N objects
for (i in 1:M)

{
As shown, the sample function returns a
single
element in the interval 1:N
p = sample(N, 1)
q = sample(N, 1)

Additional processing as needed…
ProcessPair(p, q);
}

repeat

repeat expr

Continually evaluate expression

Loop must be terminated with break
statement

Example: repeat
Sample with replacement from a set of N objects
until the number 615 is sampled twice
M <- matches <- 0
repeat

{
Keep track of total connections sampled
M <- M + 1

Sample a new connection
p = sample(N, 1)

Increment matches whenever we sample 615
if (p == 615)

matches <- matches + 1;

Stop after 2 matches
if (matches == 2)

break;
}

while

while (expr_1) expr_2

While expr_1 is false, repeatedly
evaluate expr_2

break and next statements can be
used within the loop

Example: while
Sample with replacement from a set of N objects
until 615 and 815 are sampled consecutively
match <- false
while (match == false)

{
sample a new element
p = sample(N, 1)

if not 615, then goto next iteration
if (p != 615)

next;

Sample another element
q = sample(N, 1)

Check if we are done
if (q != 815)

match = true;
}

Functions in R

Easy to create your own functions in R

As tasks become complex, it is a good
idea to organize code into functions that
perform defined tasks

In R, it is good practice to give default
values to function arguments

Function definitions

name <- function(arg1, arg2, …)
expression

Arguments can be assigned default values:
arg_name = expression

Return value is the last evaluated expression
or can be set explicitly with return()

Defining Functions
> square <- function(x = 10) x * x
> square()
[1] 100
> square(2)
[1] 4

> intsum <- function(from=1, to=10)
{
sum <- 0
for (i in from:to)

sum <- sum + i
sum
}

> intsum(3) # Evaluates sum from 3 to 10 …
[1] 52
> intsum(to = 3) # Evaluates sum from 1 to 3 …
[1] 6

Some notes on functions …
You can print the arguments for a function using args()
command

> args(intsum)
function (from = 1, to = 10)

You can print the contents of a function by typing only its
name, without the ()

You can edit a function using
> my.func <- edit(my.old.func)

Debugging Functions
Toggle debugging for a function with
debug()/undebug() command

With debugging enabled, R steps through
function line by line
• Use print() to inspect variables along the way
• Press <enter> to proceed to next line

> debug(intsum)
> intsum(10)

So far …
Different types of variables
• Numbers, Vectors, Data Frames, Lists

Control program execution
• Grouping expressions with {}
• Controlling loop execution

Create functions and edit functions
• Set argument names
• Set default argument values

Useful R Functions

Online Help
Random Generation
Input / Output
Data Summaries
Exiting R

Random Generation in R

In contrast to many C implementations, R
generates pretty good random numbers

set.seed(seed)can be used to select a
specific sequence of random numbers

sample(x, size, replace = FALSE)
generates a sample of size elements from x.
• If x is a single number, sample is from 1:x

Random Generation
runif(n, min = 1, max = 1)
• Samples from Uniform distribution
rbinom(n, size, prob)
• Samples from Binomial distribution
rnorm(n, mean = 0, sd = 1)
• Samples from Normal distribution
rexp(n, rate = 1)
• Samples from Exponential distribution
rt(n, df)
• Samples from T-distribution

And others!

R Help System
R has a built-in help system with useful
information and examples

help() provides general help
help(plot) will explain the plot function
help.search(“histogram”) will search for
topics that include the word histogram

example(plot) will provide examples for the
plot function

Input / Output

Use sink(file) to redirect output to a file
Use sink() to restore screen output

Use print() or cat() to generate output
inside functions

Use source(file) to read input from a
file

Basic Utility Functions
length() returns the number of elements
mean() returns the sample mean
median() returns the sample mean
range() returns the largest and smallest values
unique() removes duplicate elements
summary() calculates descriptive statistics
diff() takes difference between consecutive
elements
rev() reverses elements

Managing Workspaces

As you generate functions and variables, these
are added to your current workspace

Use ls() to list workspace contents and rm()
to delete variables or functions

When you quit, with the q() function, you can
save the current workspace for later use

Summary of Today’s Lecture

Introduction to R

Variables in R
Basic Loop Syntax in R
Functions in R

Examples of useful built-in functions

Next Lecture…
Introduction to R Graphics

-3 -2 -1 0 1 2

-4
-2

0
2

4

x

y

Histogram of x

x

Fr
eq

ue
nc

y

-4 -3 -2 -1 0 1 2 3

0
50

10
0

15
0

20
0

> x <- rnorm(1000)
> y <- rnorm(1000) + x
> summary(y)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-4.54800 -1.11000 -0.06909 -0.09652 0.86200 4.83200
> var(y)
[1] 2.079305
> hist(x, col="lightblue")
> plot(x,y)

Learning More About R

Excellent documentation is available at
www.r-project.org

• “An Introduction to R”
by Venables and Smith
in the Documentation Section

Good book to browse is “Data Analysis and
Graphics in R” by Maindonald and Braun

For your review

Implementations of the three Union-Find
algorithms (from Lecture 1) are provided
in the next few pages…

Example: Quick Find Function
QuickFind <- function(N = 100, M = 100)
{
a <- seq(1, N) # initialize array

for (dummy in seq(1,M)) # for each connection
{
p <- sample(N, 1) # sample random objects
q <- sample(N, 1)

if (a[p] == a[q]) # check if connected
next

a[a == a[p]] <- a[q] # update connectivity array
}

}

Example: Quick Union Function
QuickUnion <- function(N = 100, M = 100)

{
a <- seq(1, N) # initialize array

for (dummy in seq(1,M)) # for each connection
{
p <- sample(N, 1) # sample random objects
q <- sample(N, 1)

check if connected
i = a[p]; while (a[i] != i) i <- a[i]
j = a[q]; while (a[j] != j) j <- a[j]

if (i == j)
next

a[i] = j # update connectivity array
}

}

Example: Weighted Quick Union
WeightedQuickUnion <- function(N = 100, M = 100)
{
a <- seq(1, N) # initialize arrays
weight <- rep(1, N)

for (dummy in seq(1,M)) # for each connection
{
p <- sample(N, 1) # sample random objects
q <- sample(N, 1)

i = a[p]; while (a[i] != i) i <- a[i] # FIND
j = a[q]; while (a[j] != j) j <- a[j]

if (i == j) next

if (weight[i] < weight[j]) # UNION
{ a[i] = j; weight[j] <- weight[j] + weight[i]; }

else
{ a[j] = i; weight[i] <- weight[i] + weight[j]; }

}
}

Benchmarking a function

To conduct empirical studies of a
functions performance, we don’t always
need a stopwatch.

Relevant functions
•Sys.time() gives current time
•difftime(stop, start) difference

between two times

Example: Slower Quick Find…
QuickFind2 <- function(N = 100, M = 100)

{
a <- seq(1, N) # initialize array

for (dummy in seq(1,M)) # for each connection
{
p <- sample(N, 1) # sample random objects
q <- sample(N, 1)

if (a[p] == a[q]) # check if connected
next

set <- a[p] # update connectivity array
for (i in 1:N)

if (a[i] == set)
a[i] = a[q]

}
}

Example: Slower Quick Find…
> bench <- function(f, N = 100, M = 100)

{
cat(" N = ", N, ", M = ", M, "\n")

start <- Sys.time()
f(N, M)
stop <- Sys.time()
difftime(stop, start)
}

> bench(QuickFind, 4000, 4000)
N = 4000 , M = 4000
Time difference of 2 secs
> bench(QuickFind2, 4000, 4000)
N = 4000 , M = 4000
Time difference of 1.066667 mins

