Merge Sort

Biostatistics 615/815
Lecture 11
Scheduling ...

- I will hand out sample midterm next week

- Revision Q & A
 - October 26 or November 1?

- Mid-term Exam
 - November 1 or November 3?
 - Take Home
Problem Set 3 Notes

- Dynamic Programming
 - Top Down
 Recursive implementation, with additional code to store results of each evaluation (at the end) and to use previously stored results (at the beginning)
 - Bottom Up
 Evaluate small values of the function and proceed to successively larger values.
Problem 1

- Using top-down dynamic programming, evaluate:

\[
\binom{N}{k} = \binom{N-1}{k} + \binom{N-1}{k-1}
\]

- Must initialize matrix or results could be wrong
Notes

- **Use** `double` **to store function results**
 - Allows solution to larger problems
 - `long` **and** `long long` are alternatives in Unix

- **Additional rules**
 - Choose\((N, k) = \text{Choose}(N, N - k)\)

- **Use global variable for intermediate results**
Initializing Matrix in R

- `matrix(nrow = 10, ncol = 10)`
 - Creates a matrix with 10 rows and columns

- `matrix(data = 0, nrow = 10, ncol = 10)`
 - The optional parameter allows the matrix to be pre-initialized with an element of choice, which could even be a vector!
Dynamic Matrix in C

```c
int ** matrix;

// Allocate an array of pointers
matrix = malloc(sizeof(int *) * nrow);

// Allocate an array of integers for each row
for (i = 0; i < nrow; i++)
    matrix[i] = malloc(sizeof(int) * ncol);
```
Problem 2

- Using bottom-up dynamic programming, evaluate:

\[C(N) = \begin{cases}
N + \frac{1}{N} \sum_{k=1}^{N} C(k - 1) + C(N - k) & N \geq 2 \\
0 & N \leq 1
\end{cases} \]

- Calculation is still slow, due to nested sum… but this can be simplified
Speedy Solution ...

```c
int comparisons[Nmax];
double inner_sum = 0.0;

comparisons[1] = comparisons[0] = 0;

for (i = 2; i < Nmax; i++)
{
    inner_sum += 2 * comparisons[i - 1];
    comparisons[i] = i + inner_sum / i;
}
```
Last Lecture: Quick Sort

- Choose a partitioning element …

- Organize array such that:
 - All elements to the right are greater
 - All elements to the left are smaller

- Sort right and left sub-arrays independently
Improvements We Considered

- Delay sort for small sub-arrays
 - Use insertion sort instead

- Use median-of-three partitioning
 - Random partitioning element can also help!

- Avoid recursion
C Code: QuickSort

```c
void quicksort(Item * a, int start, int stop)
{
    int i;

    if (stop <= start) return;

    i = partition(a, start, stop);
    quicksort(a, start, i - 1);
    quicksort(a, i + 1, stop);
}
```
C Code: Partitioning

```c
int partition(Item * a, int start, int stop)
{
    int up = start, down = stop - 1, part = a[stop];

    if (stop <= start) return start;

    while (true)
    {
        while (isLess(a[up], part))
            up++;
        while (isLess(part, a[down]) && (up < down))
            down--;

        if (up >= down) break;
        Exchange(a[up], a[down]);
        up++; down--;
    }

    Exchange(a[up], a[stop]);
    return up;
}
```
The Selection Problem

- Consider the problem of finding the k^{th} smallest element in an array.
- Useful when searching for the median, quartiles, deciles or percentiles.
Selection – small k

- We can solve the problem in $O(Nk) = O(N)$

- One approach:
 - Perform k passes
 - For pass j, find j smallest element

- Another approach:
 - Maintain a small array with k smallest elements
Selection – for large k

- One option is to sort array…

- But we only need to bring k into position

- Focus on one side of current partition
C Code: Selection

// Places kth smallest element in the kth position
// within array. Could move other elements.
void select(Item * a, int start, int stop, int k)
{
 int i;

 if (start <= stop) return;

 i = partition(a, start, stop);

 if (i > k) select(a, start, i - 1);
 if (i < k) select(a, i + 1, stop);
}
C Code: Without Recursion

void select(Item * a, int start, int stop, int k)
{
 int i;

 while (start < stop)
 {
 i = partition(a, start, stop);

 if (i >= k) stop = i - 1;
 if (i <= k) start = i + 1;
 }
}
Selection

- Quicksort based method is $O(N)$
 - Rough argument:
 - First pass through N elements
 - Second pass through $N/2$ elements
 - Third pass through $N/4$ elements
 - ...
 - All passes will take time small constant * N

- Common application: finding k smallest values in a simulation to save for further analyses
The Problem

- The computer stack has a limited size
- Quick Sort can call itself up to N-1 times
 - Unlikely, but very deep recursion is possible!
- Can we provide a guarantee on depth of recursion?
The Solution

- After partitioning, handle smaller half first
 - At most, $\log_2 N$ smaller halves!

- Keep track of sections to be solved in “explicit” stack
void quicksort(Item * a, int start, int stop)
{
 int i, s = 0, stack[64];

 stack[s++] = start; stack[s++] = stop;
 while (s > 0)
 {
 stop = stack[--s]; start = stack[--s];
 if (start >= stop) continue;

 i = partition(a, start, stop);
 if (i - start > stop - i)
 { stack[s++] = start; stack[s++] = i - 1;
 stack[s++] = i + 1; stack[s++] = stop; }
 else { stack[s++] = i + 1; stack[s++] = stop;
 stack[s++] = start; stack[s++] = i - 1; }
 }
}
Quick Sort Summary

- Divide and Conquer Algorithm
 - Recursive calls can be “hidden”

- Optimizations
 - Choice of median
 - Threshold for brute-force methods
 - Limiting depth of recursion
Merge Sort

- Divide-And-Conquer Algorithm
 - Divides a file in two halves
 - Merges sorted halves

- The “opposite” of quick sort

- Requires additional storage
C Code: Merge Sort

```c
void mergesort(Item * a, int start, int stop)
{
    int m = (start + stop)/2;

    if (stop <= start) return;

    mergesort(a, start, m);
    mergesort(a, m + 1, stop);
    merge(a, start, m, stop);
}
```
Merge Pattern N = 21
Merging Sorted Arrays

- Consider two arrays
- Assume they are both in order
- Can you think of a merging strategy?
void merge(Item * merge,
 Item * a, int N, Item* b, int M)
{
 int i, j, k;
 for (k = 0; k < M + N; k++)
 {
 if (i == N) { merge[k] = b[j++]; continue; }
 if (j == M) { merge[k] = a[i++]; continue; }
 if (isLess(b[j], a[i]))
 { merge[k] = b[j++]; }
 else
 { merge[k] = a[i++]; }
 }
}
“In-Place” Merge

- For sorting, we would like to:
 - Starting with sorted halves
 - \(a[\text{start} \ldots \ m]\)
 - \(a[m + 1 \ldots \ \text{end}]\)
 - Generate a sorted stretch
 - \(a[\text{start} \ldots \ \text{end}]\)

- We would like an in-place sort…
 - Or something that “looks” like one
Abstract In-Place Merge

- For caller, performs like in-place merge
- Creates copies two sub-arrays
- Replaces contents with merge results
C Code: Abstract In-place Merge

Item aux[maxN];

void merge(Item* a, int start, int m, int stop)
{
 int i, j, k;

 for (i = start; i <= stop; i++)
 aux[i] = a[i];

 for (i = k = start, j = m + 1; k <= stop; k++)
 if (j <= stop && isLess(aux[j], aux[i]) || i > m)
 a[k] = aux[j++];
 else
 a[k] = aux[i++];
}
Avoiding End-of-Input Check

At each point, compare elements i and j.

Then select the smallest element.

Move i or j towards the middle, as appropriate.
C Code: Abstract In-place Merge

```c
void merge(Item * a, int start, int m, int stop)
{
  int i, j, k;

  for (i = start; i <= m; i++)
    aux[i] = a[i];
  for (j = m + 1; j <= stop; j++)
    aux[m + 1 + stop - j] = a[j];

  for (i = k = start, j = stop; k <= stop; k++)
    if (isLess(aux[j], aux[i]))
      a[k] = aux[j--];
    else
      a[k] = aux[i++];
}
```
Merge Sort in Action
Merge Sort Notes

- Order $N \log N$
 - Number of comparisons independent of data
 - Exactly $\log N$ rounds
 - Each requires N comparisons

- Merge sort is stable

- Insertion sort for small arrays is helpful
Sedgewick’s Timings (secs)

<table>
<thead>
<tr>
<th>N</th>
<th>QuickSort</th>
<th>MergeSort</th>
<th>MergeSort*</th>
</tr>
</thead>
<tbody>
<tr>
<td>100,000</td>
<td>24</td>
<td>53</td>
<td>43</td>
</tr>
<tr>
<td>200,000</td>
<td>52</td>
<td>111</td>
<td>92</td>
</tr>
<tr>
<td>400,000</td>
<td>109</td>
<td>237</td>
<td>198</td>
</tr>
<tr>
<td>800,000</td>
<td>241</td>
<td>524</td>
<td>426</td>
</tr>
</tbody>
</table>

Array of floating point numbers; * using insertion for small arrays
Non-Recursive Merge Sort

- First sort all sub-arrays of 1 element
- Perform successive merges
 - Merge results into sub-arrays of 2 elements
 - Merge results into sub-arrays of 4 elements
 - ...

Bottom-Up Merge Sort

```c
int min(int a, int b)
{ return a < b ? a : b; }

void mergesort(Item* a, int start, int stop)
{
    int i, m;

    for (m = 1; m < stop - start; m += m)
        for (i = start; i < stop; i += m + m)
        {
            int from = i, mid = i + m - 1;
            int to = min(i + m + m - 1, stop);
            merge(a, from, mid, to);
        }
}
```
Merging Pattern for N = 21
Sedgewick’s Timings (secs)

<table>
<thead>
<tr>
<th>N</th>
<th>QuickSort</th>
<th>Top-Down MergeSort</th>
<th>Bottom-Up MergeSort</th>
</tr>
</thead>
<tbody>
<tr>
<td>100,000</td>
<td>24</td>
<td>53</td>
<td>59</td>
</tr>
<tr>
<td>200,000</td>
<td>52</td>
<td>111</td>
<td>127</td>
</tr>
<tr>
<td>400,000</td>
<td>109</td>
<td>237</td>
<td>267</td>
</tr>
<tr>
<td>800,000</td>
<td>241</td>
<td>524</td>
<td>568</td>
</tr>
</tbody>
</table>

Array of floating point numbers
Today ...

- Quick Sort
- Merge Sort
- Unraveled Recursive Sorts
- Contrasting approaches to divide and conquer
Recommended Reading

- For QuickSort
 - Sedgewick, Chapter 7

- For MergeSort
 - Sedgewick, Chapter 8