Some Uses of Random Numbers

- Simulating data
 - Evaluate statistical procedures
 - Evaluate study designs
 - Evaluate program implementations

- Controlling stochastic processes
 - Markov-Chain Monte-Carlo methods

- Selecting questions for exams
Random Numbers and Computers

- Most modern computers do not generate truly random sequences.

- Instead, they can be programmed to produce *pseudo-random* sequences.
 - These will behave the same as random sequences for a wide-variety of applications.
Uniform Deviates

- Fall within specific interval (usually 0..1)
- Potential outcomes have equal probability
- Usually, one or more of these deviates are used to generate other types of random numbers
C Library Implementation

// RAND_MAX is the largest value returned by rand
// RAND_MAX is 32767 on MS VC++ and on Sun Workstations
// RAND_MAX is 2147483647 on my Linux server
#define RAND_MAX XXXXX

// This function generates a new pseudo-random number
int rand();

// This function resets the sequence of
// pseudo-random numbers to be generated by rand
void srand(unsigned int seed);
Example Usage

```c
#include <stdlib.h>
#include <stdio.h>

int main()
{
    int i;

    printf("10 random numbers between 0 and %d\n", RAND_MAX);

    /* Seed the random-number generator with
     * current time so that numbers will be
     * different for every run.
     */
    srand( (unsigned) time(NULL) );

    /* Display 10 random numbers. */
    for( i = 0; i < 10; i++ )
        printf("  %6d\n", rand());
}
```
Unfortunately ...

- Many library implementations of `rand()` are botched

- Referring to an early IBM implementation, a computer consultant said ...
 - *We guarantee each number is random individually, but we don’t guarantee that more than one of them is random.*
Good Advice

- Always use a random number generator that is known to produce “good quality” random numbers

- “Strange looking, apparently unpredictable sequences are not enough”
 - Park and Miller (1988) in Communications of the ACM provide several examples
Lehmer’s (1951) Algorithm

- Multiplicative linear congruential generator
 - \(I_{j+1} = aI_j \mod m \)

- Where
 - \(I_j \) is the \(j \)th number in the sequence
 - \(m \) is a large prime integer
 - \(a \) is an integer \(2 \ldots m - 1 \)
Rescaling

- To produce numbers in the interval 0..1:
 - $U_j = l_j / m$
- These will range between $1/m$ and $1 - 1/m$
Example 1

- $l_{j+1} = 6 \cdot l_j \mod 13$

- Produces the sequence:
 - ... 1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1, ...

- Which includes all values 1 .. $m-1$ before repeating itself
Example 2

- $l_{j+1} = 7 \cdot l_j \mod 13$

- Produces the sequence:
 - ... 1, 7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2, 1 ...

- This sequence still has a full period, but looks a little less “random” ...
Example 3

- $I_{j+1} = 5I_j \mod 13$

- Produces one of the sequences:
 - ... 1, 5, 12, 8, 1, ...
 - ... 2, 10, 11, 3, 2, ...
 - ... 4, 7, 9, 6, 4, ...

- In this case, if $m = 13$, $a = 5$ is a very poor choice
Practical Values for a and m

- Do not choose your own (dangerous!)
- Rely on values that are known to work.

- Good sources:
 - Numerical Recipes in C
 - Park and Miller (1988) Communications of the ACM

- We will use $a = 16807$ and $m = 2147483647$
/* This implementation will not work in
 * many systems, due to integer overflows
 */

static int seed = 1;
double Random()
{
 int a = 16807;
 int m = 2147483647; /* 2^31 – 1 */

 seed = (a * seed) % m;
 return seed / (double) m;
}

/* If this is working properly, starting with seed = 1,
 * the 10,000th call produces seed = 1043618065
 */
Many systems will not represent integers larger than 2^{32}

We need a practical calculation where:
- Results Cover nearly all possible integers
- Intermediate values do not exceed 2^{32}
The Solution

- Let $m = aq + r$

- Where
 - $q = m / a$
 - $r = m \mod a$
 - $r < q$

- Then
 $$ aI_j \mod m = \begin{cases}
 a(I_j \mod q) - r[I_j / q] & \text{if } \geq 0 \\
 a(I_j \mod q) - r[I_j / q] + m & \text{otherwise}
 \end{cases} $$
Random Number Generator: A Portable Implementation

```
#define RAND_A      16807
#define RAND_M      2147483647
#define RAND_Q      127773
#define RAND_R      2836
#define RAND_SCALE  (1.0 / RAND_M)

static int seed = 1;

double Random()
{
    int k = seed / RAND_Q;

    seed = RAND_A * (seed - k * RAND_Q) - k * RAND_R;
    if (seed < 0) seed += RAND_M;

    return seed * (double) RAND_SCALE;
}
```
Reliable Generator

- Fast

- Some slight improvements possible:
 - Use \(a = 48271 \) (\(q = 44488 \) and \(r = 3399 \))
 - Use \(a = 69621 \) (\(q = 30845 \) and \(r = 23902 \))

- Still has some subtle weaknesses …
 - E.g. whenever a value < \(10^{-6} \) occurs, it will be followed by a value of < 0.017, which is \(10^{-6} \times \text{RAND}_A \)
Further Improvements

- **Shuffle Output.**
 - Generate two sequences, and use one to permute the output of the other.

- **Sum Two Sequences.**
 - Generate two sequences, and return the sum of the two (modulus the period for either).
// Define RAND_A, RAND_M, RAND_Q, RAND_R as before
#define RAND_TBL 32
#define RAND_DIV (1 + (RAND_M - 1) / RAND_TBL)

static int random_next = 0;
static int random_tbl[RAND_TBL];

void SetupRandomNumbers(int seed)
{
 int j;

 if (seed == 0) seed = 1;

 for (j = RAND_TBL - 1; j >= 0; j--)
 {
 int k = seed / RAND_Q;
 seed = RAND_A * (seed - k * RAND_Q) - k * RAND_R;
 if (seed < 0) seed += RAND_M;
 random_tbl[j] = seed;
 }

 random_next = random_tbl[0];
}
double Random()
{
 // Generate the next number in the sequence
 int k = seed / RAND_Q, index;
 seed = RAND_A * (seed - k * RAND_Q) - k * RAND_R;
 if (seed < 0) seed += RAND_M;

 // Swap it for a previously generated number
 index = random_next / RAND_DIV;
 random_next = random_tbl[index];
 random_tbl[index] = seed;

 // And return the shuffled result ...
 return random_next * (double) RAND_SCALE;
}
Shuffling ...

- Shuffling improves things, however ...
- Requires additional storage ...
- If an extremely small value occurs (e.g. $< 10^{-6}$) it will be slightly correlated with other nearby extreme values.
Summing Two Sequences (I)

```c
#define RAND_A1 40014
#define RAND_M1 2147483563
#define RAND_Q1 53668
#define RAND_R1 12211

#define RAND_A2 40692
#define RAND_M2 2147483399
#define RAND_Q2 52744
#define RAND_R2 3791

#define RAND_SCALE1 (1.0 / RAND_M1)
```
Summing Two Sequences (II)

```c
static int seed1 = 1, seed2 = 1;

double Random()
{
    int k, result;

    k = seed1 / RAND_Q1;
    seed1 = RAND_A1 * (seed1 - k * RAND_Q1) - k * RAND_R1;
    if (seed1 < 0) seed1 += RAND_M1;

    k = seed2 / RAND_Q2;
    seed2 = RAND_A2 * (seed2 - k * RAND_Q2) - k * RAND_R2;
    if (seed2 < 0) seed2 += RAND_M2;

    result = seed1 - seed2;
    if (result < 1) result += RAND_M1 - 1;

    return result * (double) RAND_SCALE1;
}
```
Summing Two Sequences

- If the sequences are uncorrelated, we can do no harm:
 - If the original sequence is “random”, summing a second sequence will preserve the original randomness

- In the ideal case, the period of the combined sequence will be the least common multiple of the individual periods
So far ...

- Uniformly distributed random numbers
 - Using Lehmer’s algorithm
 - Work well for carefully selected parameters

- “Randomness” can be improved:
 - Through shuffling
 - Summing two sequences
 - Or both (see Numerical Recipes for an example)
Random Numbers in R

- In R, multiple generators are supported

- To select a specific sequence use:
 - `RNGkind()` -- select algorithm
 - `RNGversion()` -- mimics older R versions
 - `set.seed()` -- selects specific sequence

- Use `help(RNGkind)` for details
Random Numbers in R

Many custom functions:
- `runif(n, min = 0, max = 1)`
- `rnorm(n, mean = 0, sd = 1)`
- `rt(n, df)`
- `rchisq(n, df, ncp = 0)`
- `rf(n, df1, df2)`
- `rexp(n, rate = 1)`
- `rgamma(n, shape, rate = 1)`
The general approach for sampling from an arbitrary distribution is to:

Define
- Cumulative density function $F(x)$
- Inverse cumulative density function $F^{-1}(x)$

Sample $x \sim U(0,1)$
Evaluate $F^{-1}(x)$
Example: Exponential Distribution

- Consider:
 - \(f(x) = e^{-x} \)
 - \(F(x) = 1 - e^{-x} \)
 - \(F^{-1}(y) = -\ln(1 - y) \)

```cpp
double RandomExp()
{
    return -log(Random());
}
```
Example: Categorical Data

- To sample from a discrete set of outcomes, use:

```c
int SampleCategorical(int outcomes, double * probs)
{
    double prob = Random();
    int outcome = 0;

    while (outcome + 1 < outcomes && prob > probs[outcome])
    {
        prob -= probs[outcome];
        outcome++;
    }
    return outcome;
}
```
More Useful Examples

- Numerical Recipes in C has additional examples, including algorithms for sampling from normal and gamma distributions
Recommended Reading

- Numerical Recipes in C
 - Chapters 7.1 – 7.3

- Park and Miller (1998)
 “Random Number Generators: Good Ones Are Hard To Find”
 Communications of the ACM
One Application: Numerical Integration

- Suppose we want to evaluate:

\[
I = \int_{x_0}^{x_n} \int_{y_0}^{y_n} \int_{z_0}^{z_n} f(x, y, z) \, dx \, dy \, dz
\]

- Assume that we can sample points within the target region in some manner ...
Monte-Carlo Integral

The estimated integral is simply:

\[I \approx \frac{V}{N} \sum_{i=1}^{N} f(x_i) \]

where \(V \) is the volume where integration is occurring, and \(N \) is the number of points sampled.
Monte-Carlo Integration Error

\[I \approx V \langle f \rangle \pm V \sqrt{\frac{\langle f^2 \rangle - \langle f \rangle^2}{N}} \]

where

\[\langle f \rangle = \frac{1}{N} \sum_{i=1}^{N} f(x_i) \]

\[\langle f^2 \rangle = \frac{1}{N} \sum_{i=1}^{N} f^2(x_i) \]
Monte-Carlo Integration

- With randomly sampled points ...
- … error term is proportional to $N^{1/2}$

- Consider what happens when we divide our original volume into sections α and β:

 $$\langle f \rangle = \frac{1}{2} \left(\langle f \rangle_{\alpha} + \langle f \rangle_{\beta} \right)$$

- It is easy to show that the resulting estimator would typically have equal or smaller variance …
Alternative Sampling Strategies

- In small numbers of dimensions, we could use non-random spacing of points.

- For high dimensional problems, there are other useful techniques for allocating points...
 - Basic strategy is to invest some points to explore the function, and then allocate the remaining points to *interesting* sub-regions.