Last Lecture

- Computer generated “random” numbers

- Linear congruential generators
 - Improvements through shuffling, summing

- Importance of using validated generators
 - Beware of problems with the default `rand()` function
Today: Numerical Integration

- Strategies for numerical integration
- Simple strategies with equally spaced abscissas
- Gaussian quadrature methods
- Monte-Carlo Integration
The Problem

- Evaluate:

\[I = \int_{a}^{b} f(x) \, dx \]

- When no analytical solution is readily available

- Many applications in statistics
 - Analysis of censored data,
 - Evaluation of cumulative distributions, etc.
The Challenge

- Evaluate $f(x)$ as few times as possible
- Select appropriate set of abscissas
- Select appropriate set of weights
The Basic Approach

open formulas use these points

closed formulas use these points
Notation

- Consider a series of abscissas
 - $x_0, x_1, x_2, \ldots, x_n, x_{n+1}$

- Let these be a constant step size h apart
 - $x_i = x_0 + i \cdot h$

- Further define:
 - $f_i = f(x_i)$
Two Point Trapezoidal Rule

\[\int_{x_1}^{x_2} f(x) \, dx \approx h \left[\frac{1}{2} f_1 + \frac{1}{2} f_2 \right] \]

- Exact for polynomials up to degree 1
 - For example, \(f(x) = 2x + 1 \)
- Error proportional to \(h^3 \) and \(f^{(2)} \)
Three Point Simpson's Rule

\[\int_{x_1}^{x_3} f(x)dx \approx h \left[\frac{1}{3} f_1 + \frac{4}{3} f_2 + \frac{1}{3} f_3 \right] \]

- Exact for polynomials up to degree 3 (not 2!)
 - Due to some symmetries in derivation
- Error proportional to \(h^5 \) and \(f^{(4)} \)
Four Point Rule

\[\int_{x_1}^{x_4} f(x) \, dx \approx h \left[\frac{3}{8} f_1 + \frac{9}{8} f_2 + \frac{9}{8} f_3 + \frac{3}{8} f_4 \right] \]

- Exact for polynomials up to degree 3
 - No lucky symmetries this time…
- Error proportional to \(h^5 \) and \(f^{(4)} \)
- Additional formulas exist for higher orders …
Extended Rules

- Combine simple rules along consecutive intervals
- Two and three point rules allow for adaptive integration
 - Gradually add points and check accuracy…
Extended Trapezoidal Rule

\[\int_{x_1}^{x_n} f(x)dx = h \left[\frac{1}{2} f_1 + f_2 + f_3 + \ldots + \frac{1}{2} f_n \right] \]

- Results from application of trapezoidal rule to consecutive intervals …
Simple C Implementation

// Integrates function f(x) between a and b
// by evaluating it at the edges of the interval
// and at n interior points
double integrate2(double a, double b, double (*f)(double x), int n)
{
 double h = (b - a) / (n + 1), sum;
 int i;

 sum = 0.5 * (*f)(a) + (*f)(b));

 for (int i = 1; i <= n; i++)
 sum += (*f)(a + i * h);

 return sum * h;
}
Extended Simpson Rule

\[\int_{x_1}^{x_n} f(x) \, dx = h \left[\frac{1}{3} f_1 + \frac{4}{3} f_2 + \frac{2}{3} f_3 + \frac{4}{3} f_4 \ldots + \frac{1}{3} f_n \right] \]

- Results from application of Simpson's rule to consecutive intervals …
 - Note alternating 2/3 and 4/3 weights …
double integrate3(double a, double b, double (*f)(double x), int n) {
 double h, sum; int i;

 if (n % 2 == 0) n++; // n must be odd
 h = (b - a) / (n + 1);

 sum = (*f)(a) + (*f)(b) + 4.0 * (*f)(a + h);

 for (int i = 2; i <= n; i += 2)
 sum += 2.0 * (*f)(a + i*h) + 4.0 * (*f)(a + (i + 1)*h);

 return sum * h / 3.0;
}
Problem ...

- Knowing the required number of points before hand may not be practical…

- Is there a simple way to "add more points"?
Gradually Adding Points

Can you derive formula for updating integral if points are added in this manner? How would you check if a desired accuracy has been reached?
double update_integral(double a, double b,
 double (*f)(double x),
 double previous, int round)
{
 double h, sum;
 int i, n = 1 << (round - 1);

 if (round == 0)
 return 0.5 * ((*f)(a) + (*f)(b)) * (b - a);

 sum = previous * n / (b - a);
 h = (b - a) / (2 * n);
 for (int i = 1; i < 2 * n; i += 2)
 sum += (*f)(a + i*h);

 return sum * h;
}
#define ZEPS 1e-10

double integral(double a, double b, double (*f)(double x),
 double eps)
{
 double old = update_integral(a, b, f, 0.0, 0), result;
 int round = 1;

 while (1)
 {
 result = update_integral(a, b, f, old, round++);
 if (fabs(result-old) < eps*(fabs(result)+fabs(old))+ZEPS)
 return result;
 old = result;
 }
}
Simpson's Extended Rule ...

- Define T_N and T_{2N} to be trapezoidal rule results with N and $2N$ points, respectively.

- Then the application of Simpson's rule gives:

$$S = \frac{4}{3} T_{2N} - \frac{1}{3} T_N$$
double simpson(double a, double b, double (*f)(double x), double eps)
{
 double old = update_integral(a, b, f, 0.0, 0), result;
 double sold = old, sresult;
 int round = 1;

 while (1)
 {
 result = update_integral(a, b, f, old, round++);
 sresult = (4.0 * result - old) / 3.0;
 if (fabs(sresult - sold) < eps*(fabs(sresult) + fabs(sold)) + ZEPS)
 return sresult;
 old = result; sold = sresult;
 }
}
Simple Application

- Integrate standard normal density
 - Between 0.0 and 1.0
 - Correct result is 0.341345

- With $\varepsilon=10^{-5}$, I got the following results:
 - Trapezoidal rule, 7 rounds, 129 evaluations, 0.341344
 - Simpson's rule, 4 rounds, 17 evaluations, 0.341355

- In this case, higher order approximation is better
Notes on Classical Methods

- These methods are most intuitive

- Two major applications:
 - Functions that are not smooth
 - Function can be pre-calculated along a grid

- Exact solutions for polynomials of degree n typically require n or $n-1$ evaluations
Classical Methods

- Function evaluated at equally spaced points
- Choice of weights for combining results determines order of approximation
Quadrature Methods

- Select locations of function evaluations and weights simultaneously
 - Abscissas correspond to zeros of particular classes of orthogonal polynomials

- Achieves higher order approximations faster
Gaussian Quadrature

\[\int_{a}^{b} f(x)dx \approx \sum_{j=1}^{N} w_{j} f(x_{j}) \]

- The original idea is due to Gauss (1814)
 - Described a strategy for choosing appropriate weights and abscissas
- Weights and abscissas can be chosen to provide exact results for polynomials of degree \(2N - 1 \) or integrable functions of the form \(W(x) \ast \text{polynomial}(2N - 1) \)
Intuition Behind Idea

- Evaluating function at any two points, we can derive exact solution for polynomials of degree 1.
 - E.g. The trapezoidal rule does this.

- But a single well chosen point can achieve the same result...
 - Which point?
Some Example Abscissas

<table>
<thead>
<tr>
<th>(N)</th>
<th>Abscissas</th>
<th>Weights</th>
<th>MaxDegree</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(\left(-\sqrt{\frac{1}{3}} \right)) (+ \sqrt{\frac{1}{3}})</td>
<td>(\begin{pmatrix} 1.0 \ 1.0 \end{pmatrix})</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>(\begin{pmatrix} -0.77459667 \ 0.0 \ +0.77459667 \end{pmatrix})</td>
<td>(\begin{pmatrix} 0.5555555 \ 0.8888889 \ 0.5555555 \end{pmatrix})</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>(\begin{pmatrix} -0.86113631 \ -0.33998104 \ +0.33998104 \ +0.86113631 \end{pmatrix})</td>
<td>(\begin{pmatrix} 0.34785485 \ 0.65214515 \ 0.65214515 \ 0.34785485 \end{pmatrix})</td>
<td>7</td>
</tr>
</tbody>
</table>
double gauss3(double a, double b, double (*f)(double x))
{
 double abscissas[] = {-0.77459667, 0.0, 0.77459667};
 double weights[] = {0.55555555, 0.88888889, 0.55555555};
 double midpoint = 0.5 * (a + b);
 double h = 0.5 * (b - a);
 double sum = 0.0;

 for (int i = 0; i < 3; i++)
 sum += weights[i] * (*f)(midpoint + abscissas[i] * h);

 return sum * h;
}
Comparison

- Integrate standard normal density
 - Between 0.0 and 1.0
 - Correct result is 0.341345

- With 2, 3 and 4 function evaluations I got:
 - Using trapezoidal rule
 - 0.320457, 0.336261, 0.339096
 - Using quadrature
 - 0.341221, 0.341346, 0.341345
 - Using Simpson's rule (3 evaluations)
 - **********, 0.341529, **********
Multi-Dimensional Integrals

\[\int_{x=a}^{x=b} \int_{y=c}^{y=d} f(x, y) \, dx \, dy = \int_{x=a}^{x=b} g(x) \, dx \]

\[g(x) = \int_{c}^{d} f(x, y) \, dy \]

- Simplest strategy is to evaluate as a series of one dimensional integrals
 - Exponential increase in function evaluations
Monte-Carlo Methods

- Evaluate and average function at random points

- Adaptive methods focus on areas where integrand is most significant
 - Crucial for multiple dimensions
Monte-Carlo Importance Sampling

- Assume N evaluations are available
- Evaluate function at kN random points
- Divide region of integration into high and low variance regions
 - Allocate remaining $(1-k)N$ points so that most are used in high variance region
Today:

- Numerical integration
- Classical strategies, with equally spaced abscissas
- Discussion of quadrature methods and Monte-Carlo methods
Recommended Reading

- Numerical Recipes
 - Chapters 4.0 – 4.2 for Classical Methods
 - Chapter 4.5 for Gaussian Quadrature
 - Chapter 7.8 for Monte-Carlo methods

- Available online at:
 - http://www.nr.com