Multidimensional Optimization: The Simplex Method

Lecture 20
Biostatistics 615/815
Previous Topic: One-Dimensional Optimization

- Bracketing
- Golden Search
- Quadratic Approximation
Bracketing

- Find 3 points such that
 - \(a < b < c \)
 - \(f(b) < f(a) \) and \(f(b) < f(c) \)

- Locate minimum by gradually trimming bracketing interval

- Bracketing provides additional confidence in result
The Golden Ratio

Bracketing Triplet

A — B — C

New Point

A — B — X — C

0.38196 — 0.38196
Parabolic Interpolation

For well behaved functions, faster than Golden Search
Today: Multidimensional Optimization

- Illustrate the method of Nelder and Mead
 - Simplex Method
 - Nicknamed "Amoeba"

- Simple and, in practice, quite robust
 - Counter examples are known

- Discuss other standard methods
C Utility Functions: Allocating Vectors

- Ease allocation of vectors.
- Peppered through today's examples

```c
#define __double__

double * alloc_vector(int cols)
{
    return (double *) malloc(sizeof(double) * cols);
}

void free_vector(double * vector, int cols)
{
    free(vector);
}
```
C Utility Functions: Allocating Matrices

double ** alloc_matrix(int rows, int cols)
{
 int i;
 double ** matrix = (double **) malloc(sizeof(double *) * rows);

 for (i = 0; i < rows; i++)
 matrix[i] = alloc_vector(cols);
 return matrix;
}

void free_matrix(double ** matrix, int rows, int cols)
{
 int i;
 for (i = 0; i < rows; i++)
 free_vector(matrix[i], cols);
 free(matrix);
}
The Simplex Method

- Calculate likelihoods at simplex vertices
 - Geometric shape with k+1 corners
 - E.g. a triangle in k = 2 dimensions

- Simplex *crawls*
 - Towards minimum
 - Away from maximum

- Probably the most widely used optimization method
A Simplex in Two Dimensions

- Evaluate function at vertices

- Note:
 - The highest (worst) point
 - The next highest point
 - The lowest (best) point

- Intuition:
 - Move away from high point, towards low point
double ** make_simplex(double * point, int dim)
{
 int i, j;
 double ** simplex = alloc_matrix(dim + 1, dim);

 for (int i = 0; i < dim + 1; i++)
 for (int j = 0; j < dim; j++)
 simplex[i][j] = point[j];

 for (int i = 0; i < dim; i++)
 simplex[i][i] += 1.0;

 return simplex;
}
C Code:
Evaluating Function at Vertices

- This function is very simple
 - This is a good thing!
 - Making each function almost trivial makes debugging easy

```c
void evaluate_simplex
    (double ** simplex, int dim,
     double * fx, double (* func)(double *, int))
{
    for (int i = 0; i < dim + 1; i++)
        fx[i] = (*func)(simplex[i], dim);
}
```
void simplex_extremes(double *fx, int dim, int *ihi, int *ilo, int *inhi)
{
 int i;

 if (fx[0] > fx[1])
 { *ihi = 0; *ilo = *inhi = 1; }
 else
 { *ihi = 1; *ilo = *inhi = 0; }

 for (i = 2; i < dim + 1; i++)
 if (fx[i] <= fx[*ilo])
 *ilo = i;
 else if (fx[i] > fx[*ihi])
 { *inhi = *ihi; *ihi = i; }
 else if (fx[i] > fx[*inhi])
 *inhi = i;
}
Direction for Optimization

- Line through worst point and average of other points
- Average of all points, excluding worst point
void simplex Bearings(double ** simplex, int dim,
 double * midpoint, double * line, int ihi)
{
 int i, j;
 for (j = 0; j < dim; j++)
 midpoint[j] = 0.0;

 for (i = 0; i < dim + 1; i++)
 if (i != ihi)
 for (j = 0; j < dim; j++)
 midpoint[j] += simplex[i][j];

 for (j = 0; j < dim; j++)
 {
 midpoint[j] /= dim;
 line[j] = simplex[ihi][j] - midpoint[j];
 }
}
Reflection

This is the default new trial point
Reflection and Expansion

If reflection results in new minimum...

Move further along minimization direction
Contraction (One Dimension)

Try a smaller step

If \(x' \) is still the worst point…
C Code:
Updating The Simplex

```c
int update_simplex(double * point, int dim, double * fmax,
                    double * midpoint, double * line, double scale,
                    double (* func)(double *, int))
{
    int i, update = 0; double * next = alloc_vector(dim), fx;

    for (i = 0; i < dim; i++)
        next[i] = midpoint[i] + scale * line[i];
    fx = (*func)(next, dim);

    if (fx < *fmax)
    {
        for (i = 0; i < dim; i++) point[i] = next[i];
        *fmax = fx; update = 1;
    }

    free_vector(next, dim);
    return update;
}
```
If a simple contraction doesn't improve things, then try moving all points towards the current minimum

"passing through the eye of a needle"
```c
void contract_simplex(double ** simplex, int dim,
                       double * fx, int ilo,
                       double (*func)(double *, int))
{
    int i, j;

    for (int i = 0; i < dim + 1; i++)
        if (i != ilo)
            for (int j = 0; j < dim; j++)
                simplex[i][j] = (simplex[ilo][j]+simplex[i][j])*0.5;
    fx[i] = (*func)(simplex[i], dim);
}
```
Summary: The Simplex Method

- Original Simplex
- Reflection
- Reflection and expansion
- Contraction
- Multiple contraction
C Code: Minimiziation Routine (Part I)

- Declares local variables and allocates memory

```c
double amoeba(double *point, int dim,
               double (*func)(double *, int),
               double tol)
{
    int ihi, ilo, inhi, j;
    double fmin;
    double * fx = alloc_vector(dim + 1);
    double * midpoint = alloc_vector(dim);
    double * line = alloc_vector(dim);
    double ** simplex = make_simplex(point, dim);

    evaluate_simplex(simplex, dim, fx, func);
}```
while (true)
{
    simplex_extremes(fx, dim, &ihi, &ilo, &inhi);
    simplex_bearings(simplex, dim, midpoint, line, ihi);

    if (check_tol(fx[ihi], fx[ilo], tol)) break;

    update_simplex(simplex[ihi], dim, &fx[ihi],
                   midpoint, line, -1.0, func);

    if (fx[ihi] < fx[ilo])
        update_simplex(simplex[ihi], dim, &fx[ihi],
                       midpoint, line, -2.0, func);
    else if (fx[ihi] >= fx[inhi])
        if (!update_simplex(simplex[ihi], dim, &fx[ihi],
                            midpoint, line, 0.5, func))
            contract_simplex(simplex, dim, fx, ilo, func);
}
C Code: Minimization Routine (Part III)

- Store the result and free memory

```c
for (j = 0; j < dim; j++)
 point[j] = simplex[ilo][j];

fmin = fx[ilo];

free_vector(fx, dim);
free_vector(midpoint, dim);
free_vector(line, dim);
free_matrix(simplex, dim + 1, dim);

return fmin;
}
```
C Code: Checking Convergence

```c
#include <math.h>

#define ZEPS 1e-10

int check_tol(double fmax, double fmin, double ftol)
{
 double delta = fabs(fmax - fmin);
 double accuracy = (fabs(fmax) + fabs(fmin)) * ftol;

 return (delta < (accuracy + ZEPS));
}
```
 amoeba()

- A general purpose minimization routine
  - Works in multiple dimensions
  - Uses only function evaluations
  - Does not require derivatives

- Typical usage:
  - `my_func(double * x, int n) { ... }
  - `amoeba(point, dim, my_func, 1e-7);`
Example Application
Old Faithful Eruptions (n = 272)

Old Faithful Eruptions

Duration (mins)

Frequency

0 5 10 15 20

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Duration (mins)
Fitting a Normal Distribution

- Fit two parameters
  - Mean
  - Variance

- Requires ~165 likelihood evaluations
  - Mean = 3.4878
  - Variance = 1.2979

- Maximum log-likelihood = -421.42
Nice fit, eh?

Old Faithful Eruptions

Fitted Distribution
A Mixture of Two Normals

- Fit 5 parameters
  - Proportion in the first component
  - Two means
  - Two variances

- Required about ~700 evaluations
  - First component contributes 0.34841 of mixture
  - Means are 2.0186 and 4.2734
  - Variances are 0.055517 and 0.19102

- Maximum log-likelihood = -276.36
Two Components

![Old Faithful Eruptions](chart1)

- Duration (mins)
- Frequency

![Fitted Distribution](chart2)

- Duration (mins)
- Density
A Mixture of Three Normals

- Fit 8 parameters
  - Proportion in the first two components
  - Three means
  - Three variances
- Required about ~1400 evaluations
  - Did not always converge!
- One of the best solutions …
  - Components contributing .339, 0.512 and 0.149
  - Component means are 2.002, 4.401 and 3.727
  - Variances are 0.0455, 0.106, 0.2959
  - Maximum log-likelihood = -267.89
Three Components

Old Faithful Eruptions

Fitted Distribution
Tricky Minimization Questions

- Fitting variables that are constrained
  - Proportions vary between 0 and 1
  - Variances must be positive

- Selecting the number of components

- Checking convergence
Improvements to amoeba()

- Different scaling along each dimension
  - If parameters have different impact on the likelihood

- Track total function evaluations
  - Avoid getting stuck if function does not cooperate

- Rotate simplex
  - If the current simplex is leading to slow improvement
Other Minimization Strategies

- One parameter at a time
- Using gradient information
- More complex, so we won't provide code examples.
  - Good implementations in R `optim()` function
optim() Function in R

- optim(point, function, method)
  
  - Point – starting point for minimization
  - Function that accepts point as argument
  - Method can be
    - "Nelder-Mead" for simplex method (default)
    - "BFGS", "CG" and other options use gradient
One parameter at a time

- Simple but inefficient approach

- Consider
  - Parameters $\theta = (\theta_1, \theta_2, \ldots, \theta_k)$
  - Function $f(\theta)$

- Maximize $\theta$ with respect to each $\theta_i$ in turn
  - Cycle through parameters
The Inefficiency...
Steepest Descent

**Consider**
- Parameters $\theta = (\theta_1, \theta_2, \ldots, \theta_k)$
- Function $f(\theta; x)$

**Score vector**

$$S = \frac{d \ln f}{d \theta} = \left( \frac{d \ln f}{d \theta_1}, \ldots, \frac{d \ln f}{d \theta_k} \right)$$

- Find maximum along $\theta + \delta S$
Still inefficient...

Consecutive steps are still perpendicular!
Multidimensional Minimization

- Typically, sophisticated methods will...

- Use derivatives
  - May be calculated numerically. How?

- Select a direction for minimization, using:
  - Weighted average of previous directions
  - Current gradient
  - Avoid right angle turns
Recommended Reading

- Numerical Recipes in C (or C++, or Fortran)
  - Press, Teukolsky, Vetterling, Flannery
  - Chapters 10.4

- Clear description of Simplex Method
  - Other sub-chapters illustrate more sophisticated methods

- Online at
  - [http://www.numerical-recipes.com/](http://www.numerical-recipes.com/)