Floating Point Precision

1. This problem aims to explore the accuracy of floating point representations in your system. You should investigate the float and double data types in C as well as the default floating point representation in R. Write a program that calculates the following three quantities:
a. The smallest positive number ε such that $1.0+\varepsilon>1.0$.
b. The smallest positive number ε^{*} such that $1.0-\varepsilon^{*}<1.0$.
c. The smallest positive number that can be stored in a variable and is >0.0.
2. Care must be taken when evaluating certain mathematical expressions on a computer, as rounding errors can build up to become quite large. One well known example relates to the golden ratio, φ. This number is:

$$
\phi=\frac{\sqrt{5}-1}{2}=0.61803398
$$

The number has the useful property that:

$$
\begin{align*}
& \phi^{n}=\phi^{n-1} \phi \tag{1}\\
& \phi^{n}=\phi^{n-2}-\phi^{n-1} \tag{2}
\end{align*}
$$

Thus, successive powers of φ can be conveniently calculated using either expression (1) or (2).

Starting with $\varphi^{0}=1$ and φ^{1} defined above, write an R program that fills an array with successive powers of φ using expression (1) and another array using expression (2). Plot both sets of results for $\varphi^{\mathrm{n}}=1 . .80$. Which one appears more accurate? Why?

