Dynamic Programming

1. Write a function that uses top-down dynamic programming to calculate the binomial coefficients, based on the recursive rule:

\[
\binom{N}{k} = \binom{N-1}{k} + \binom{N-1}{k-1}
\]

The boundary conditions are:

\[
\binom{N}{0} = \binom{N}{N} = 1
\]

Compute the binomial coefficient for \(N = 30 \) and \(k = 15 \).

What are the performance advantages of an implementation based on top-down dynamic programming compared to an implementation based on bottom-up dynamic programming, for calculating binomial coefficients?

2. The expected number of comparisons performed by the QuickSort algorithm (which we will describe later in the course) when sorting \(N \) elements is:

\[
C(N) = \begin{cases}
N + \frac{1}{N} \sum_{k=1}^{N} \binom{N-1}{k} + \binom{N-1}{N-k} & N \geq 2 \\
0 & N \leq 1
\end{cases}
\]

Write a function that uses bottom-up dynamic programming to compute \(C(N) \).

Tabulate \(C(N) \) for \(N = 10, 20, 100, 200 \) and \(1000 \).