Random Number Generation

1. An old text book on computer simulation recommends the following sequence of pseudo-random numbers:

$$
\mathrm{I}_{\mathrm{j}+1}=\mathrm{a} \mathrm{I}_{\mathrm{j}} \text { mod } \mathrm{m} \text {, with } \mathrm{a}=20,403 \text { and } \mathrm{m}=2^{15} .
$$

What is the period of this random number generator, that is, how many numbers can be generated before the sequence repeats itself?
2. Consider the following formula for generating pseudo-random sequences:

$$
I_{j+1}=\left(a I_{j}+c\right) \bmod m
$$

When c = 1 and $\mathrm{m}=32$, examine the resulting sequences when:
a) $a=13$
b) $\mathrm{a}=17$
c) $\mathrm{a}=19$
d) $\mathrm{a}=10$

Which of the three sequences appear random? Do all sequences have a full period (32 is the maximum period in this case)?

Integration

3. Implement code to calculate the integral of the function $f(x)=(1+x) /\left(1+x^{2}\right)$ in the interval $(2,4)$ using each of the following numerical methods:
a) Standard Trapezoidal rule, with 2 function evaluations.
b) Trapezoidal rule with 3 function evaluations.
c) Simpon's rule with 3 function evaluations.
d) Two point Gaussian quadrature.

The exact integral is approximately 0.83 . How do you explain the differences between the 4 results above?
4. Consider the function $f(x)=\operatorname{sqrt}(x) * \log (x)$ for $x>0$, and let $f(0)=0$. Implement code to calculate the integral of this function in the interval $(0,1)$ using each of the following numerical methods:
a) Adaptive quadrature, using the trapezoidal rule, until a relative precision of 10^{-5} is reached.
b) Adaptive quadrature, using Simpson's rule, until a relative precision of 10^{-} ${ }^{5}$ is reached.
c) Four point Gaussian quadrature.

How many function evaluations where required in each case?

