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Gene Expression in Skin and Lymphoblastoid Cells:
Refined Statistical Method Reveals
Extensive Overlap in cis-eQTL Signals

Jun Ding,1,7,* Johann E. Gudjonsson,2,7 Liming Liang,1,8 Philip E. Stuart,2 Yun Li,1,9 Wei Chen,1

Michael Weichenthal,3 Eva Ellinghaus,4 Andre Franke,4 William Cookson,5 Rajan P. Nair,2

James T. Elder,2,6 and Gonçalo R. Abecasis1,*

Psoriasis, an immune-mediated, inflammatory disease of the skin and joints, provides an ideal system for expression quantitative trait

locus (eQTL) analysis, because it has a strong genetic basis and disease-relevant tissue (skin) is readily accessible. To better understand the

role of genetic variants regulating cutaneous gene expression, we identified 841 cis-acting eQTLs using RNA extracted from skin biopsies

of 53 psoriatic individuals and 57 healthy controls. We found substantial overlap between cis-eQTLs of normal control, uninvolved

psoriatic, and lesional psoriatic skin.Consistentwith recent studies andwith the idea that controlof gene expressioncanmediate relation-

ships between genetic variants anddisease risk,we found that eQTL SNPs aremore likely to be associatedwith psoriasis than are randomly

selected SNPs. To explore the tissue specificity of these eQTLs and hence to quantify the benefits of studying eQTLs in different tissues, we

developed a refined statisticalmethod for estimating eQTL overlap and used it to compare skin eQTLs to a published panel of lymphoblas-

toid cell line (LCL) eQTLs. Ourmethod accounts for the fact thatmost eQTL studies are likely tomiss some true eQTLs as a result of power

limitations and shows that ~70% of cis-eQTLs in LCLs are shared with skin, as compared with the naive estimate of < 50% sharing. Our

results provide a usefulmethod for estimating the overlap betweenvarious eQTL studies andprovide a catalogof cis-eQTLs in skin that can

facilitate efforts to understand the functional impact of identified susceptibility variants on psoriasis and other skin traits.
Introduction

Transcriptional regulation of gene expression is essential

for almost every process in a cell, and abnormal transcrip-

tional regulation is likely to be involved in the etiology of

many diseases. Advances in high-throughput gene expres-

sion profiling and genotyping technologies have recently

enabled researchers to study the genetic variants that regu-

late gene expression at a genomic scale.1 Such genome-

wide association studies (GWAS) of gene expression have

identified thousands of genetic loci affecting the expres-

sion of specific transcripts. Each of these loci is called an

expression quantitative trait locus (eQTL). The identifica-

tion of eQTLs will enhance our understanding of global

transcriptional regulation and regulatory variation.

Furthermore, as GWAS of diseases identify many suscepti-

bility variants with no known functional effects,2 eQTL

studies might help clarify the function of many newly

identified susceptibility variants.3

Studies of global gene expression were initially per-

formed in model organisms (ranging from yeast4,5 to flies6

to mice7), but more recent studies have directly examined

human cells.8–11 In humans, the vast majority of validated

eQTLs map to within a few hundred kilobase pairs of the

associated transcription unit. Loosely, these loci are termed
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cis-eQTLs. In contrast to cis-eQTLs, loci located far from the

transcripts that they regulate have been much harder to

confidently identify in humans and are, loosely, termed

trans-eQTLs. One example of the utility of eQTL analysis

is the GWAS for asthma (MIM 600807) reported byMoffatt

and colleagues.12 The study showed that a set of noncod-

ing genetic variants that is strongly associated with child-

hood asthma also regulates expression levels of ORMDL3

(MIM 610075), focusing attention on ORMDL3 as a target

for additional functional studies. Most human studies

have measured transcript abundance in blood cells

(peripheral blood lymphocytes and immortalized lympho-

blastoid cell lines [LCLs]); only a small number of studies

have examined it in other tissues (e.g., liver13 or brain14).

There is a controversy regarding whether associations

observed in LCLs will translate to other tissues, and some

recent studies have suggested that overlap between eQTL

signals among tissues might be relatively small. Dimas

et al. compared lists of significant eQTLs identified in three

cell types (LCLs, fibroblasts, and T cells) and estimated that

69 to 80% of cis-eQTLs operate in a cell-type-specific

manner.15 However, our analyses provide evidence that

current eQTL studies are typically underpowered and

that, as a result, directly comparing lists of significant

eQTLs leads to underestimation of the overlap percentage.
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Indeed, our results show that overlap in eQTLs across

tissues can be substantial.

In this study we report the mapping of eQTLs in skin

tissue from psoriatic patients and healthy controls. Psori-

asis (MIM 177900) is an immune-mediated, inflammatory,

and hyperproliferative disease of the skin and joints. It

provides an ideal system for eQTL mapping analysis,

because psoriasis has a strong genetic basis and affected

tissue (skin) is readily accessible.

The current work presents two major advances. First, it

describes a large catalog of genetic variants influencing

transcript levels in both normal and psoriatic skin. This

catalog is based on gene expression and genotype data

that we have collected from normal skin from healthy

controls (normal skin), normal-appearing skin from psori-

atic patients (uninvolved skin), and diseased skin from

psoriatic patients (lesional skin). This catalog represents

a genetic map of gene regulation in skin and provides

a useful tool for examining the functional impact of genetic

variants associated with psoriasis and other diseases.

Second, it describes a method for accurately estimating

the overlap of eQTLs between tissues; we use this method

to compare our eQTL catalog in skin with a previously

described catalog for LCLs. An accurate estimate of overlap

in eQTLs across tissues can help researchers to quantify the

benefits of studying eQTLs in different tissues.We also note

that a simple and naive estimate based on the overlap of

discoveries will necessarily underestimate the true overlap

because each eQTL study will detect only a subset of all

eQTLs. Here, we describe a procedure that takes statistical

power into account to provide a more accurate estimate of

the percentage of overlapping eQTLs between two tissues.

These two aspects of our work shed light on transcrip-

tional regulation by genetic variants in skin and provide

an insight into the genetics of gene expression in different

tissue types. Our work also describes a practical approach

for estimating the overlap of signals from two experi-

mental settings. This method has the potential to be

applied to a wide range of biological studies.
Material and Methods

Mapping eQTLs in Skin
Subjects

We enrolled 58 psoriatic patients and 64 healthy controls in the

study. Patients had to have at least one well-demarcated, erythem-

atous, scaly psoriatic plaque that was not limited to the scalp. In

those instances where there was only a single psoriatic plaque,

the case was considered only if the plaque occupied more than

1% of the total body surface area. Study subjects did not use any

(a) systemic antipsoriatic treatments for 2 wks prior to biopsy or

(b) topical antipsoriatic treatments for 1 wk prior to biopsy.

Informed consent was obtained from all subjects, under protocols

approved by the institutional review board of the University of

MichiganMedical School, and the study was conducted according

to the principles of the Declaration of Helsinki. Subjects with

failed gene expression profiling or failed genotyping were
780 The American Journal of Human Genetics 87, 779–789, Decemb
excluded from the analysis. The final analysis included 53 psori-

atic patients and 57 healthy controls.

Genotype Data

Subjects (as a subset of a total of 1409 cases and 1436 controls)

were genotyped by Perlegen Sciences with the use of four proprie-

tary, high-density oligonucleotide arrays in partnership with the

Genetic Association Information Network (GAIN). A series of

quality control filters, which are described in detail in Nair

et al.,16 were applied to the genotype data. In brief, we excluded

markers with < 95% genotype call rates, with a minor allele

frequency < 1%, with a Hardy-Weinberg equilibrium (HWE)

p value < 10�6, with > 2 mismatches among 48 pairs of individ-

uals that were genotyped twice, or with > 2 Mendelian inconsis-

tencies among 27 trios; we also excluded samples with call rates

< 95% and with outlier heterozygosities. In total, 438,670 auto-

somal SNPs were genotyped for 53 psoriatic patients and 57

controls. As previously described,17–19 we used information on

patterns of haplotype variation in the HapMap CEU samples

(release 21) to infer missing genotypes ‘‘in silico.’’ We analyzed

only SNPs that were genotyped or could be imputed with rela-

tively high confidence (estimated r2 between imputed SNP and

true genotypes > 0.3, so that patterns of haplotype sharing

between sampled individuals and HapMap samples consistently

indicated a specific allele; we use this r2-based threshold, rather

than one based on the posterior probability of each imputed geno-

type, because it naturally accommodates SNPs with different allele

frequencies and because it is the same threshold used in many

recent GWAS, including our psoriasis study16).

Gene Expression Data

Two biopsies (one lesional, one uninvolved skin; 6 mm each) were

taken under local anesthesia from each psoriatic subject, whereas

one 6 mm punch biopsy (normal skin) was taken from healthy

controls. Lesional skin biopsies were taken from psoriasis plaques,

and uninvolved skin biopsies were taken from the buttocks, at

least 10 cm away from the nearest plaque. The normal-skin biop-

sies were also taken from the buttocks. RNA from each biopsy was

isolated with the RNeasy kit (QIAGEN, Valencia, CA). Samples

were run on Affymetrix U133 Plus 2.0 arrays for evaluating the

expression of ~54,000 probes, in accordance with the manufac-

turer’s protocol. The raw data from 180 microarrays were pro-

cessed via the Robust Multichip Average (RMA) method. We

considered expression levels for all ~54,000 probes on the array.

To avoid outliers, we also applied a second inverse normal trans-

formation step to residuals for each trait, after adjusting for sex

and batch effects. Procedures for extracting RNA, controlling

RNA quality, and preprocessing gene expression data are described

in detail elsewhere.20 The microarray data have been deposited

into NCBI Gene Expression Omnibus (GEO) under accession

number GSE13355.

eQTL Mapping

We tested SNP-gene expression associations separately in normal

skin (n ¼ 57), in uninvolved skin (n ¼ 53), and in lesional skin

(n ¼ 53). Given the small sample size in each analysis (< 60)

and hence the relatively low statistical power, we tested only cis-

associations between each transcript (i.e., probe) and those SNPs

in its cis-candidate region (from 1Mb upstream of the transcription

start site to 1Mb downstream of the transcription end site). Specif-

ically, we used the score test in Merlin (fastassoc option) to test the

association.21 For genotyped SNPs, the number of copies of one

allele was modeled. For imputed SNPs, the dosage (i.e., the ex-

pected number of copies) of one allele was modeled. Unless noted

otherwise, we used a p value threshold of 9 3 10�7 as the
er 10, 2010
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Figure 1. Simplified Diagram for Categorization of Significant
eQTLs from Study1 into Groups for the Estimation of the Overlap
Percentage
significance threshold to originally identify cis-eQTLs, which

corresponds to a false discovery rate (FDR) of approximately 0.01

in each of the three skin types. For gene expression traits that

were significantly associated with more than one cis-SNP, we

considered only the most significant cis-SNP.

Measuring cis-eQTL Overlap among Three Skin Types

To test whether cis-associations identified in one skin type can be

replicated in the other two skin types, we started with the signifi-

cant SNP-gene pairs identified in one skin type and then evaluated

evidence for association in the other two skin types, using

a nominal p value threshold of 0.05. We did not use the

genome-wide p value significance threshold of 9 3 10�7 for this

analysis, which focuses on a small number of SNP-gene pairs.

Ideally we would use the method we develop below (see next

section) to estimate the cis-eQTL overlap among three skin types,

but the small sample sizes of the three skin types prevented us

from using the sample splitting strategy if we wanted to maintain

adequate statistical power for the study.

Estimating the Overlap of cis-eQTL Signals

in Lymphoblastoid Cell Lines and in Skin
Intuition

To understand our method, consider the following hypothetical

situation. Suppose that in a study of LCLs from 100 individuals

we detect 1000 eQTLs. Furthermore, suppose that in a second

study of identically treated LCLs from 60 individuals we find

evidence for 300 of these eQTLs and that in a study of skin

samples from 60 individuals we find evidence for only 270 of

these eQTLs. In this hypothetical setting, the raw eQTL overlap

is only 270/1000 (or 27%) but the power-adjusted estimate of

the overlap in eQTLs is 270/300 (or 90%). More details for our

method follow.

Statistical Methods

The simplest approach to comparing eQTL lists between two

experimental settings is to evaluate the overlap of lists of signifi-

cant eQTLs compiled separately for each setting. Unfortunately,

this method will underestimate the overlap percentage whenever

either of the two studies is underpowered (in that case, many true

eQTLs might be detected in one study but missing from the list of

eQTLs detected in the second study). Here, we propose a method

that takes into account the statistical power of the studies. Very

briefly, our procedure starts by splitting the study/tissue with the

larger sample size into two parts. One part identifies eQTLs in

the tissue, and the second part provides unbiased estimators for

the power to replicate eQTL signals. This estimated power is

then used to adjust the observed raw overlap percentage and

hence to obtain a power-adjusted estimate of the overlap in

eQTL signals.

Estimating the Overlap Percentage

In our method, we assume that eQTL analyses are performed in

two studies: in study 1 (here, the study using lymphoblastoid

cell lines), we use a nominal p value cutoff of a1 to generate

a list of significant eQTLs, which corresponds to an FDR of

FDR1, whereas in study 2 (here, the study using skin tissue), we

use a nominal p value cutoff of a2, corresponding to an FDR of

FDR2. Let p be the percentage of eQTLs in study 1 that are also

eQTLs in study 2; let praw be the observed percentage of significant

eQTLs in study 1 that are also significant in study 2. Because both

eQTL lists are necessarily incomplete, praw will result in an under-

estimate of p. Our aim is, thus, to arrive at a better estimator of the

true overlap percentage p. To do this, we attempt to estimate

a power-adjusted expected overlap in significant eQTLs, padjusted.
The American
To arrive at this power-adjusted expected overlap, we start with

the list of significant eQTLs in study 1 and consider (see Figure 1

for a detailed decision diagram) a series of possibilities that might

lead these eQTLs to replicate in study 2 (i.e., to be overlapping

eQTLs): (a) a fraction (p) of true positive eQTLs in study 1 are

also true eQTLs in study 2 and are expected to replicate in study

2 with a particular power; (b) a fraction (1� p) of true positive

eQTLs in study1will not be true eQTLs in study 2 but might ‘‘repli-

cate’’ by chance, with the probability determined by the signifi-

cance threshold a2, which is simply the false positive rate; (c) false

positive eQTLs in study 1 might also replicate by chance, with the

probability also determined by the significance threshold a2. We

note that it is possible that a small fraction of false positive eQTLs

in study 1 will represent true eQTLs in study 2, but for simplicity,

we assume that this number will be approximately zero (see

Supplemental Material and Methods, available online, for the

complete decision diagram with all possibilities and the full

description of the method that leads to the simplified version pre-

sented here). Therefore:

praw ¼ ð1� FDR1Þ3p3 power2 þ ð1� FDR1Þ3 ð1� pÞ3a2

þ FDR1 3a2: (Equation 1)

where power2 is the statistical power of study 2 to detect eQTLs

that are true positives in both study 1 and study 2 (overlapping

eQTLs). Algebraic manipulation of Equation 1 above gives:

p ¼ praw � a2

ð1� FDR1Þðpower2 � a2Þ:

Thus, we can estimate p as:

bpadjusted ¼
bpraw � a2

ð1� FDR1Þðpower2 � a2Þ: (Equation 2)

In Equation 2, bpraw is an observed quantity and a2 is the (arbi-

trary) p value threshold used in study 2. Given a1, FDR1 can be esti-

mated via the Benjamini and Hochberg procedure.22 Therefore, to

estimate p, the major work is to estimate power2.

In theory, power2 is determined by the effect sizes of overlapping

eQTLs in study 2, the sample size of study 2, and the type I error
Journal of Human Genetics 87, 779–789, December 10, 2010 781



rate of study 2 (a2). To estimate power2 we calculate power2raw, the

statistical power of a study on tissue 1 with the same sample size as

study 2 and significance level a2 to detect significant study 1

eQTLs. Because significant study 1 eQTLs include both identified

true study 1 eQTLs and false positives, we use the following

formula to adjust for false positives when estimating power2 (the

formula is obtained with the use of a decision tree idea similar to

the one in Figure 1; see Supplemental Material and Methods for

the derivation):

pobwer2 ¼ pobwer2raw � FDR1 3a2

1� FDR1

: (Equation 3)

Note that a simple estimate of power2raw based on the observed

effect sizes of each eQTL in study 1 would be biased because of

the winner’s curse.23,24 To avoid the bias, we estimate power2raw
by using a sample splitting strategy: we split study1 into mutually

exclusive and independent sets: study1A and study1B. Study 1A

is used to identify significant eQTLs in study 1, whereas study 1B

is used to provide unbiased estimates for effect sizes of these eQTLs.

Given the sample size of study 2, we can then estimate power2raw on

the basis of the effect-size estimates. The sample splitting strategy

can be further simplified if splitting is done such that study 1B

has the same number of subjects and the same data structure (i.e.,

the same pattern of related and unrelated individuals) as study 2.

In this setting, the proportion of signals identified in study 1A

that are also significant in study 1B is power2raw. The results pre-

sented in this paper use this simplified sample-splitting strategy.

Our approach assumes that the distribution of effect sizes is

similar for overlapping and nonoverlapping eQTLs in study 1. In

addition, it assumes that the distribution of effect sizes for overlap-

ping eQTLs is similar between the two studies. Violation of these

assumptions could lead to an underestimate of power2 (for

example, if overlapping eQTLs typically have larger effect sizes

than the nonoverlapping ones) or to an overestimate of power2
(for example, if overlapping eQTLs typically have smaller effect

sizes in study 2 than in study 1, where they were originally de-

tected). In the Discussion, we describe results from empirical

data that support these assumptions.

Returning to the example in the ‘‘Intuition’’ section, consider

a setting in which 1000 eQTLs are detected with a 1% FDR in study

1. If 90% of the true eQTLs in study 1 are also true eQTLs in study

2, and if we set a2 ¼ 0.05 and assume the power of study 2 is 30%,

then we expect to see 273 significant eQTLs in study 2 (using the

formula from Equation 1). So bpraw ¼ 27.3%, which is approxi-

mately one-third of the true overlap percentage 90%. However,

if we apply Equation 2 with power2 ¼ 0.3, a2 ¼ 0.05, and FDR1 ¼
0.01, we get bpadjusted ¼ 90.0%.

Estimating the Variance of the Overlap Percentage

We use the jackknife resampling technique to estimate the vari-

ance of bpadjusted. We randomly remove one subject from study 1B

and one subject from study 2 to obtain new estimators for bpraw

and power2 and hence a new estimator for bpadjusted. We repeat

this procedure and obtain multiple estimators for bpadjusted and

then estimate the variance of bpadjusted as:

dvar�bpadjusted

� ¼ 1

n� 1

Xn

i¼1

�bpadjusted;i � bpadjusted

�2
:

Data for Lymphoblastoid Cell Lines

Genotype and expression data for LCLs were originally published

in Dixon et al.9 for a set of 183 families (340 subjects total). Affy-

metrix U133 Plus 2.0 arrays were used for gene expression
782 The American Journal of Human Genetics 87, 779–789, Decemb
profiling, and Sentrix HumanHap300 Genotyping BeadChips (Il-

lumina, San Diego, CA) were used for SNP genotyping. We then

used MACH17–19 to impute all HapMap SNPs, with phased

HapMap CEU sample haplotypes as templates. We split the 183

families randomly into two sets, where set 1A contained 126 fami-

lies and set 1B contained one randomly selected individual from

each of the remaining 57 families (so that the sample size matched

our study of normal skin).

Applying the Method to Estimating the Overlap of cis-eQTL Signals in

LCLs and in Skin

We first performed eQTL analysis in study 1A. As we did in the skin

study, we tested only associations between each transcript and

those SNPs within 1 Mb of the transcript. We used a range of

nominal p value thresholds, which corresponded to FDRs (FDR1)

of 0.001, 0.0005, and 0.0001. To avoid multiple counting of the

same cis-eQTL signal, we focus on the most significant SNP-tran-

script pair for each transcript. For the study in skin (study 2), we

focused our analysis on the data from the 57 healthy controls

(the data from 53 patients were also analyzed). We used a range

of a2 values (p value thresholds) in study1B and study2: 0.05,

0.001, and 0.0005.

Studying Other Features of Skin cis-eQTLs
Relationship of Skin eQTL SNPs to Association Signals in Psoriasis GWAS

We compiled a list of 9462 SNPs associated with levels of at least

one transcript in normal, uninvolved, or lesional skin with p <

9 3 10�7 (corresponding to the FDR at 0.01). From this list we

selected 389 independent skin eQTL SNPs. We thinned the eQTL

list using linkage disequilibrium (LD) while favoring SNPs with

stronger cis-association p values. Specifically, we used an r2

threshold of 0.2 so that each of the 9462 eQTL SNPs is either in

the pruned list of 389 or has a proxy SNP with r2 > 0.2 in the

pruned list. Using a quantile-quantile (Q-Q) plot, we compared

the distribution of psoriasis association p values for these 389

eQTL SNPs against the null expectation. Disease-association p

values were derived from a meta-analysis of two psoriasis GWAS,

the GAIN psoriasis GWAS16 and the Kiel psoriasis study,25 and

then all HapMap SNPs were imputed in the same way as

mentioned above. To further compare these 389 SNPs with re-

maining GWAS SNPs, we removed all skin eQTL SNPs from the

GWAS SNP set and then randomly picked 389 of the remaining

SNPs 5000 times. This allowed us to derive confidence intervals

(CIs) for the p value distribution of non-eQTL SNPs. Because we

were interested in testing whether eQTL SNPs could reveal new

psoriasis-susceptibility loci, we removed from both skin eQTL

and non-eQTL SNP lists those SNPs that were within 1 Mb of

the seven replicated loci from our recently published GWAS (i.e.,

HLA-C [MIM 142840], IL12B [MIM 161561], TNIP1 [MIM

607714], IL13 [MIM 147683], TNFAIP3 [MIM 191163], IL23A

[MIM 605580] / STAT2 [MIM 600556], and IL23R [MIM 607562]).

Gene Ontology Enrichment Analysis of Genes Associated with cis-eQTLs

We searched for Gene Ontology (GO) terms that were significantly

enriched in each list of genes associated with eQTLs in the three

skin types. This GO category-enrichment analysis was performed

with the publicly available software DAVID.
Results

Mapping cis-eQTLs in Skin

As described previously,20 we found that expression

profiles for lesional skin were markedly different from
er 10, 2010
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Figure 2. Regional Plots for Evidence of cis-Association between SNPs and ERAP2 or RPS26
The most significant SNPs (the most significant SNP associated with ERAP2 in normal skin on the left panel; the most significant SNP
associated with RPS26 in uninvolved skin on the right panel) are highlighted with a square. The other SNPs are drawn as circles and color
coded according to the degree of linkage disequilibrium with the most significant SNP.
those of normal and uninvolved skin. Using principal

component analysis (PCA) (Figure S2), we achieved near-

perfect separation of lesional skin from normal and

uninvolved skin, whereas the latter two skin types were

intermixed. Here, we do not focus on a comparison of

expression levels between the tissues,20 but instead report

on the cis-eQTLs in the different skin types.

Using a nominal p value threshold of 9 3 10�7 (corre-

sponding to an FDR for cis-associations of ~0.01 for each

of the three skin types), we identified 331, 275, and 235

independent cis-associations in normal, uninvolved, and

lesional skin, respectively.We have created a publicly avail-

able database containing the catalogs of cis-eQTLs for each

of the three skin types, which will allow researchers to

interrogate their specific SNPs or genes of interest. Figure 2

gives two examples of cis-association between gene tran-

scripts and their nearby SNPs: ERAP2 (MIM 609497) shows

clear cis-association in normal skin, peaking at rs2910686,

and similar signals in both uninvolved and lesional skin;

RPS26 (MIM 603701) has one of the most significant cis-

associations in uninvolved and lesional skin, peaking at
The American
rs11171739. Although the signal is less significant in

normal skin, the same overall pattern of association is

observed.

We then measured the overlap of cis-eQTLs among the

three skin types by testing how many significant cis-

eQTLs in one skin type were replicated in other two

skin types at a nominal p value threshold of 0.05. The

results are shown in Figure 3: 95.1%, 96.7%, and 98.7%

of the significant cis-eQTLs in normal, uninvolved, and

lesional skin, respectively, were detected in the other

two skin types. Furthermore, we observed only two cis-

eQTLs in each set that were observed only in that skin

type, consistent with an FDR of 0.01 (i.e., in a set of

200 signals, we expect to see two false positives). These

results, consistent with the similar cis-association patterns

observed in the three skin types (Figure 2), indicate that

nearly all cis-eQTLs currently identified are shared by

normal, uninvolved, and lesional skin. Therefore, the

dramatic physiological changes that are apparent in psori-

atic skin appear to have little impact on the identity of

cis-eQTLs in skin.
Journal of Human Genetics 87, 779–789, December 10, 2010 783



331 eQTLs ( p << 9*10−−7 ) in control skin

replicated in neither (0.6%)
replicated in uninvolved (3.9%)
replicated in lesional (0.3%)
replicated in both (95.2%)

275 eQTLs ( p << 9*10−−7 ) in uninvolved skin

replicated in neither (0.7%)
replicated in control (2.5%)
replicated in lesional (0%)
replicated in both (96.7%)

235 eQTLs ( p << 9*10−−7 ) in lesional skin

replicated in neither (0.9%)
replicated in control (0%)
replicated in uninvolved (0.4%)
replicated in both (98.7%)

Figure 3. The Sharing of cis-eQTLs in Normal, Uninvolved, and
Lesional Skin with the Other Two Types of Skin
The p value threshold for discovery is 9 3 10�7, and the p value
threshold for replication is 0.05.
Estimating the Overlap of cis-eQTL Signals

in Lymphoblastoid Cell Lines and in Skin

We have developed a more accurate method for estimating

the eQTL overlap between two tissues. Using our method,

we estimated the percentage of true eQTLs in LCLs that are

also true eQTLs in normal skin. As our method requires an

approximation in the formula, we controlled the FDR in

study 1 relatively tightly (i.e., controlling FDR1 at 0.001,

0.0005, and 0.0001). We allowed a2 to take a range of

different values (0.05, 0.001, and 0.0005) and then esti-

mated the overlap percentage for all combinations of

FDR1 and a2. As summarized in Table 1, the different

FDR1 and a2 thresholds give relatively consistent estimates

for the percentage of overlapping eQTLs between tissues:

around 70% of the true cis-eQTLs in LCLs are estimated

to be present in normal skin. The naive estimator bpraw

suggests overlap percentages ranging from 30% to 50% de-

pending on the statistical thresholds used in the analysis.

As an example, if we set FDR1 ¼ 0.0005 and a2 ¼ 0.001,

the observed overlap percentage (bpraw) was 0.316 and the

power was estimated at power2 ¼ 0.462. Using Equation

2, we estimated the true overlap percentage to be 68.3%

(95% CI from jackknife resampling: 66.4%–70.2%). We

also estimated the overlap of cis-eQTLs between LCLs
784 The American Journal of Human Genetics 87, 779–789, Decemb
and uninvolved skin, as well as between LCLs and lesional

skin. These additional comparisons produced similar esti-

mates of ~70% shared cis-eQTLs (Table 1). These results

suggest that a majority of cis-eQTLs are shared between

skin and LCLs.

We used permutations to further evaluate the perfor-

mance of our method under the null hypothesis of no

overlap. Specifically, we generated 20 permuted data sets

by shuffling expression phenotypes (independently of

genotype) for the skin eQTL data. In each of these

permuted data sets, the expected true overlap is zero, and

the estimated overlap obtained with our method is also

very close to zero (Table S1).

Unaccounted-for population substructure could generate

false eQTLs or mask the signal of true eQTLs, adversely

affecting estimates of eQTL overlap between tissues. In our

data, the genomic control value was 1.009 for the skin

data set. Dixon et al.9 previously reported their genomic

control value as 1.01 in the LCL data set.

Studying other Features of Skin cis-eQTLs

Relationship of Skin eQTL SNPs to Association Signals in Psoriasis

GWAS

Out of a total of 9462 SNPs that passed the eQTL signifi-

cance threshold of 9 3 10�7 in normal, uninvolved, or

lesional skin (FDR ¼ 0.01), we identified 389 independent

skin eQTLs (r2 < 0.2) and examined their potential impor-

tance in the context of psoriasis and other complex genetic

disorders that have been subjected to GWAS. First, using

the meta-analysis results for two psoriasis GWAS, we

compared the distribution of disease-association p values

for SNPs that define eQTLs and those that do not. For

this comparison, we exclude SNPs within 1 Mb of regions

known to be associated with psoriasis, so as to more

directly evaluate the ability of eQTLs to suggest new loci.

Figure 4 shows the Q-Q plot for the 389 independent

eQTL SNPs in skin, with CIs estimated by sampling the

same number of non-eQTL SNPs. The Q-Q plot clearly

shows a trend for eQTL SNPs to be more strongly associ-

ated with psoriasis than non-eQTL SNPs, an observation

that is consistent with other recent studies.26 Furthermore,

the majority of eQTL SNPs exceed the 75% CI obtained by

sampling non-eQTL SNPs, and six of the top eight ranked

eQTL SNPs exceed the 95% CI determined by sampling

non-eQTL SNPs. Table S2 presents the most significant

eQTLs identified in normal, uninvolved, and lesional

skin. Table 2 lists the top eight eQTL SNPs from the Q-Q

plot, along with their cis-association and psoriasis GWAS

results. Although the overlap between eQTL signals and

psoriasis associations is intriguing, we recognize that

further follow-up genotyping will be required to confirm

these signals. Still, examination of the genes in this list

(FUT2 [MIM 182100], RPS26, ERAP1 [MIM 606832], and

ERAP2) suggests several plausible biological connections,

which are detailed in the Discussion.

We also studied this list of skin eQTL SNPs in the context

of other complex genetic diseases that have been subjected
er 10, 2010



Table 1. Estimating the Overlap of cis-eQTLs between LCLs and the Three Types of Skin with the Use of Different Significance Thresholds

Different Thresholds 57 Normal Skin 53 Uninvolved Skin 53 Lesional Skin

FDR1 a2
bpraw power2 bpadjusted(95% CI) bpraw power2 bpadjusted(95% CI) bpraw power2 bpadjusted(95% CI)

0.001 0.05 0.520 0.771 0.652 (0.642, 0.662) 0.495 0.764 0.623 (0.612, 0.634) 0.499 0.764 0.629 (0.618, 0.640)

0.001 0.001 0.296 0.429 0.689 (0.669, 0.709) 0.278 0.402 0.691 (0.671, 0.711) 0.266 0.402 0.661 (0.641, 0.681)

0.001 0.0005 0.264 0.367 0.719 (0.692, 0.746) 0.252 0.345 0.730 (0.703, 0.757) 0.239 0.345 0.692 (0.667, 0.717)

0.0005 0.05 0.538 0.805 0.646 (0.636, 0.656) 0.514 0.798 0.620 (0.609, 0.631) 0.519 0.798 0.627 (0.616, 0.638)

0.0005 0.001 0.316 0.462 0.683 (0.664, 0.702) 0.297 0.434 0.684 (0.665, 0.703) 0.285 0.434 0.656 (0.636, 0.676)

0.0005 0.0005 0.284 0.398 0.713 (0.686, 0.740) 0.271 0.374 0.724 (0.698, 0.750) 0.256 0.374 0.684 (0.660, 0.708)

0.0001 0.05 0.587 0.856 0.666 (0.656, 0.676) 0.564 0.849 0.643 (0.632, 0.654) 0.552 0.849 0.628 (0.617, 0.639)

0.0001 0.001 0.364 0.534 0.681 (0.663, 0.699) 0.342 0.506 0.675 (0.657, 0.693) 0.332 0.506 0.655 (0.637, 0.673)

0.0001 0.0005 0.330 0.471 0.700 (0.675, 0.725) 0.315 0.442 0.712 (0.688, 0.736) 0.301 0.442 0.681 (0.659, 0.703)
to GWAS. Among 1482 significant (p < 10�5) SNP associa-

tions from 321 published GWAS curated by the National

Human Genome Research Institute, we found 14 skin

eQTL SNPs (Table S3), which are associated with 19 disease

traits, whereas we expected to see only five overlapping

SNPs by chance, with the 95% CI being 2–10 for overlap-

ping SNPs.

Enrichment of eQTLs for Genes Involved in MHC Class I Antigen

Presentation

Using DAVID,27,28 we searched for biological processes

enriched in eQTL-associated transcripts from lesional,

uninvolved, and normal skin, as well as LCLs. This analysis

revealed significant enrichment for eQTLs regulating genes

involved in the processing and presentation of endoge-

nous peptide antigens via MHC class I in lesional skin

(Table S4). We also observed a similar but nonsignificant

trend in uninvolved skin, normal skin, and LCLs. The
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Figure 4. Quantile-Quantile Plot of Psoriasis GWAS p Values for
389 Independent eQTL SNPs in Skin, with Confidence Intervals
Defined by Non-eQTL SNPs

The American
skin eQTL-associated genes observed to be enriched in

this GO category included ERAP1 (endoplasmic reticulum

aminopeptidase 1; also known as ARTS-1), TAP2 (trans-

porter, ATP-binding cassette, major histocompatibility

complex, 2 [MIM 170261]), ERAP2 (endoplasmic reticulum

aminopeptidase 2; also known as LRAP), and TAPBPL (TAP

binding protein-like [MIM 607081]). These genes are inti-

mately involved in the transport (TAP2, TAPBLPL) and pro-

cessing (ERAP1, ERAP2) of peptides within the endo-

plasmic reticulum for subsequent presentation on the

surface of cells within the antigen-binding groove of

MHC I class molecules.29 These results provide further

evidence for the genetic control of the expression of genes

involved in MHC class I antigen presentation in the skin.

Localization of cis-eQTLs With Respect To the Transcription Start

Site of the Transcripts They Putatively Regulate

We studied the localization of the most significant eQTL

for each cis-association in normal, uninvolved, and

lesional skin with respect to the transcription start site of

the gene it putatively regulates. The most significant cis-

eQTLs localize closely (most of them within 100 kb) and

roughly symmetrically around the transcription start site

(Figure S3). This localization pattern in the skin confirms

previous observations in LCLs.9,11,30 Although many

mechanisms control mRNA levels, this observed localiza-

tion pattern suggests that many, if not all, eQTLs play

a role in the regulation of transcription.
Discussion

We report an eQTL map of human skin and identify eQTLs

in normal skin, uninvolved skin from psoriatic individuals,

and lesional psoriatic skin. Our results thus provide a useful

resource for studying the regulation of gene expression in

skin. Our analysis shows that the vast majority of strong

cis-eQTLs are shared in the three skin tissue types, which

indicates that the physiology of the disease does not

change the identity of those strong cis-eQTLs. This finding

does not preclude a role for cis-eQTLs in psoriasis or other
Journal of Human Genetics 87, 779–789, December 10, 2010 785



Table 2. cis-Association and Psoriasis Association Meta-Analysis Results for the Eight Independent Skin eQTL SNPs with the Most
Significant Psoriasis Association

Marker

cis-Association Psoriasis GWAS

cis-Associated
Gene

cis-Association p Value
Alleles
Risk/Nonrisk

Risk Allele
Frequency OR Meta p ValueaNormal Uninvolved Lesional

rs492602 FUT2 1.5 3 10�4 1.9 3 10�6 1.0 3 10�9 G/A 0.482 1.169 2.7 3 10�4

rs12039309 TMEM77 3.2 3 10�7 5.3 3 10�6 2.7 3 10�5 G/T 0.271 1.212 8.5 3 10�4

rs11171739 RPS26 1.3 3 10�5 6.8 3 10�11 2.1 3 10�10 C/T 0.418 1.174 8.7 3 10�4

rs13008446 LOC348751 1.9 3 10�6 1.7 3 10�4 1.3 3 10�7 A/G 0.655 1.191 1.4 3 10�3

rs8082268 C17orf45 1.0 3 10�7 6.7 3 10�7 4.4 3 10�5 C/T 0.651 1.188 2.4 3 10�3

rs2910686 ERAP2 5.6 3 10�11 8.5 3 10�11 6.1 3 10�11 C/T 0.427 1.144 2.7 3 10�3

rs139910 TNRC6B 2.6 3 10�7 5.0 3 10�4 3.3 3 10�2 C/G 0.744 1.117 4.1 3 10�3

rs503612 ENDOD1 2.9 3 10�9 9.6 3 10�9 6.9 3 10�9 C/A 0.564 1.148 4.8 3 10�3

a The p value from the psoriasis GWAS meta-analysis (GAIN study þ Kiel study). For all eight SNPs, the effect directions are consistent in the two studies of the
meta-analysis.
skin diseases. First, although it appears that the same set of

transcripts are cis-regulated in all three skin types, differ-

ences in genotype frequencies for the regulatory SNP

between cases and controls can result in differences in

expression levels for the transcripts they regulate between

psoriatic and normal skin. Second, it is possible that the

same transcripts can have different downstream effects in

normal and diseased skin tissues.

We have developed a refinedmethod for estimating eQTL

overlap between two tissues. Our method can provide

a more accurate estimator for the eQTL overlap percentage

whenever either of the two studies is underpowered. Our

multistep procedure first generates a list of potential eQTLs

and then uses unbiased estimates for eQTL effect sizes to

estimate the expected number of replicating eQTLs for

a specific sample size. The proportion of overlapping eQTLs

can then be interpreted in this context. Our method can be

useful in a variety of settings where estimation of the over-

lap of two signal lists is needed. For example, in theory the

method can be applied to estimate the overlap of areas of

the brain activated by two different stimuli in an fMRI

(functional magnetic resonance imaging) experiment.

Using ourmethod, we have estimated that around 70% of

the significant cis-eQTLs in LCLs are also observed in skin,

a value that greatly exceeds the raw overlap of 30%–50%ob-

tained with the use of a naive estimator. If overlapping

eQTLs typically had larger effect sizes than nonoverlapping

eQTLs, we might expect these to replicate across tissues

more often than expected for an ‘‘average’’ eQTL. To empir-

ically examine this possibility, we divided the set of eQTLs

identified in the lymphocyte data into two equally sized

groups: a ‘‘large effect size’’ group with the largest effect

eQTLs and a ‘‘small effect size’’ group with the remainder.

As shown in Table S5 (and described in Supplemental Mate-

rial and Methods), we found very similar estimates of eQTL

overlap between tissues for ‘‘large effect’’ and ‘‘small effect’’

eQTLs. We also compared eQTL effect sizes between LCLs
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and skin for overlapping loci. Our results show that the

effect sizes are similar for the two groups (Figure S4),

providing further reassurance of the validity of our method.

We also compared the LCL cis-eQTLs in our analysis with

cis-eQTLs identified in fibroblasts and T cells generated by

Dimas and colleagues.15 Even though the raw overlap

percentages were rather low, after we adjusted for the

power of the study (because sample sizes of LCLs, fibro-

blasts, and T cells are the same in Dimas et al.,15 the power

of the study can be estimated by using the results from

LCLs in that same study), we estimated that 65%–70% of

significant LCL cis-eQTLs were also present in fibroblasts

and T cells (Table 3 and Supplemental Material and

Methods). This finding is consistent with our results

comparing LCLs and skin. The same methods we have

described here to compare eQTL sets between tissues could

be used to compare eQTL sets between many different

groups, including comparisons of eQTL lists between pop-

ulations, sexes, and cases and controls.

Our method provides an estimate of the fraction of

eQTLs shared between two tissues, but this is only one of

many questions of interest when comparing the impact

of genetic variation on gene regulation across tissues. For

example, it would be desirable to evaluate whether eQTLs

maintain their relative importance across tissues: perhaps,

even if eQTLs are generally shared between tissues, their

relative impact on gene expression will vary. Additionally,

one might be interested in examining how these propor-

tions vary for specific categories of genes. For example,

one might propose that eQTLs regulating the expression

of genes involved in repair might be relatively conserved

across tissues, whereas those involved in more tissue-

specific processes (such as those involved in the specializa-

tion of different skin cell types) might be more often tissue

specific. Whereas the first question can be addressed with

more detailed statistical models, the second question can

be addressed by focusing the analysis on subsets of genes
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Table 3. eQTL Overlap between LCLs from Dixon et al.9 and LCLs,
Fibroblasts, and T Cells from Dimas et al.15

Overlap with LCLs (Dixon et al.)

a2 ¼ 0.01 a2 ¼ 0.005 a2 ¼ 0.001

Dimas et al. bpraw
bpadjusted

bpraw
bpadjusted

bpraw
bpadjusted

FDR1 ¼ 0.001

LCLs 0.368 1.000a 0.312 1.000a 0.241 1.000a

Fibroblasts 0.237 0.633 0.202 0.643 0.151 0.624

T cells 0.257 0.690 0.230 0.732 0.167 0.691

FDR1 ¼ 0.005

LCLs 0.326 1.000a 0.272 1.000a 0.208 1.000a

Fibroblasts 0.210 0.632 0.177 0.644 0.131 0.630

T cells 0.235 0.712 0.204 0.744 0.143 0.687

a Assumed.
of related function. Both analyses will benefit from large

sample sizes and larger eQTL lists.

Results from the eQTL mapping in skin are also useful in

interpreting genetic susceptibility loci identified by GWAS

of multiple complex traits, including skin diseases. We

examined whether eQTL SNPs were more likely to be asso-

ciated with psoriasis. This is analogous to other analyses

that might focus on SNPs that are likely to be functional

because, for example, they encode nonsynonymous SNPs.

This focused analysis of eQTL SNPs identified SNPs near

FUT2 (rs492602), RPS26 (rs11171739), ERAP1 (rs7063),

and ERAP2 (rs2910686) loci as attractive candidates for

further analysis in psoriasis and other autoimmune

diseases. Other lines of evidence support the idea that these

genes might be important for psoriasis. For example, FUT2

encodes a fucosyltransferase involved in the synthesis of

blood-group antigens,31 which are also involved in the fu-

cosylation of cell-surface proteins on epithelia.32

rs492602, the peak eQTL SNP in the region, also corre-

sponds to thepeakpsoriasis association signal in the region.

RPS26 is linked to antigen processing and presentation and

T cell-mediated immunity. eQTL SNPs near RPS26 (e.g.,

rs2292239) have been associated with type I diabetes,13

though their relevance as a direct disease determinant has

been questioned.33 In our data, the same SNPs show sugges-

tive association with psoriasis (p value ¼ 0.01) and with

RPS26 transcript levels in both uninvolved and lesional

skin (p value < 10�9 in both tissues). We also observed

highly significant eQTL associations for ERAP1 and

ERAP2. The products of these genes are intimately involved

in the process of trimming peptides in preparation for

loading into MHC class I molecules;34 variants near

ERAP1 are associated with ankylosing spondylitis (MIM

106300),35 another autoimmune disorder. As this paper

went to press, association between ERAP1 and psoriasis

was reported in a large independent sample.36 Psoriasis,

psoriatic arthritis (MIM 607507), and ankylosing spondy-

litis are the only major autoimmune diseases that are
The American
primarily associated with MHC class I, and ERAP1 is

involved in MHC class I antigen processing.

In summary, we have provided a catalog of genetic vari-

ants influencing transcript levels in skin and developed

amethod for estimating eQTL overlap between two tissues.

In the future, larger eQTL studies will enable us to study

both cis- and trans-eQTLs and hence to provide a compre-

hensive profile for the genetics of gene expression in skin.

With the efforts from our group and others, more data are

being collected from different tissues, and researchers will

soon be able to comprehensively study the tissue specificity

of eQTLs and to have a better understanding of common

and tissue-specific transcription-regulation mechanisms.

In addition, newly developed technologies (e.g., exon mi-

croarrays and next-generation RNA sequencing for high-

throughput geneexpressionprofiling)will notonlyprovide

us with higher quality data, but will also enable us to study

the regulation of different isoforms of the same transcript

and to provide a more sophisticated picture of the genetic

regulation of transcription.
Supplemental Data

Supplemental Data include Supplemental Material and Methods,

four figures, and five tables and can be found with this article

online at http://www.cell.com/AJHG/.
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