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To investigate genetic variants that affect
iron concentrations in persons not af-
fected by overt genetic disorders of iron
metabolism, a genome-wide association
study was conducted in the InCHIANTI
Study (N � 1206) and the Baltimore Longi-
tudinal Study of Aging (N � 713). The top
2 single-nucleotide polymorphisms were
examined for replication in the Women’s
Health and Aging Study (WHAS) I and II

(N � 569). The single-nucleotide polymor-
phism most strongly associated with
lower serum iron concentration was
rs4820268 (P � 5.12 � 10�9), located in
exon 13 of the transmembrane protease
serine 6 (TMPRSS6) gene, an enzyme that
promotes iron absorption and recycling
by inhibiting hepcidin antimicrobial pep-
tide transcription. The allele associated
with lower iron concentrations was also

associated with lower hemoglobin levels,
smaller red cells, and more variability in
red cell size (high red blood cell distribu-
tion width). Our results confirm the asso-
ciation of TMPRSS6 variants with iron
level and provide further evidence of asso-
ciation with other anemia-related pheno-
types. (Blood. 2010;115:94-96)

Introduction

Iron is an important cofactor for enzymes performing basic functions in
human physiology.1 Iron deficiency has important pathologic conse-
quences including but not limited to anemia.2 Iron is also toxic and can
react with oxygen species to form chemically active free radicals that
damage macromolecules and cellular organelles.3 To avoid both deficien-
cies and toxicity, iron homeostasis is tightly regulated.

Iron balance is maintained through regulation of dietary iron uptake
and systemic distribution with only very small quantities eliminated
through bleeding and shedding of the intestinal mucosa.4 Studies have
suggested that variability in iron concentrations is in part genetically
determined with heritability estimates of 20% to 30%.5,6

Over the past decade, heritable, overt pathologic iron deficiencies
and iron overload have been attributed to mutations in a number of key
genes that control iron homeostasis.1 However, whether iron levels are
affected by genetic variants in subjects who are not affected by these
Mendelian diseases is unclear. To address this question, we conducted a
genome-wide association study (GWAS) in the InCHIANTI and the
Baltimore Longitudinal Study of Aging (BLSA) and confirmed our
results in the Women’s Health and Aging Study (WHAS).

Methods

Study subjects

The InCHIANTI study is a population-based epidemiologic study per-
formed in a sample of the population living in the Chianti region of
Tuscany, Italy.7 The BLSA study is a population-based study conducted in a

sample of volunteers predominantly from the Baltimore–Washington, DC,
area.8 The WHAS I and II are companion prospective, observational studies
of the causes and consequences of disability in older women.9,10 The
3 studies were approved by the institutional review boards at their
respective institutions.

Iron-related measurements

Serum iron was measured using a colorimetric assay (Roche Diagnostics;
InCHIANTI;WHAS) or Fe slide method (VITROS 750, Johnson &
Johnson; BLSA). Serum ferritin was measured using Quest Diagnostics
Laboratory (formerly Ciba-Corning Laboratories; WHAS), chemilumines-
cent immunoassay (Abbott Diagnostic; INCHIANTI) or an immunoassay-
type 2-stage sandwich method using 2 antiferritin antibodies (Advia
Centaur, Bayer; BLSA). Other traits (hemoglobin, hematocrit, red blood
cell width, mean corpuscular volume, red blood cell count, and platelets)
were assessed using autoanalyzer SYSMEX SE-9000 (Sysmex Corpora-
tion; InCHIANTI), coulter hematology analyzer (WHAS), and SYSMEX
XE-series (Sysmex Corporation).

Genotyping

Genome-wide genotyping of the InCHIANTI and BLSA was assessed
using the Illumina Infinium HumanHap 550K.11,12 Association analysis was
conducted on 475 322 single-nucleotide polymorphisms (SNPs) that passed
quality control (minor allele frequency � 1%, genotyping completeness
� 99%, and Hardy Weinberg-equilibrium � 0.0001). Genotyping of
rs855791 and rs4820268 in WHAS was performed using AppliedBiosys-
tems TaqMan Assays on Demand.
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Statistical analysis

For association analysis, inverse normal transformation was applied to iron
concentrations to avoid inflated type I error resulting from nonnormal data
distribution.13 An additive genetic model was tested by fitting a simple
regression adjusted for age2 and sex using the fastAssoc option in MERLIN
as previously described.13,14 For the BLSA, the analysis was restricted to
subjects with European ancestry, and each analysis was further adjusted for
the top 2 principal components derived from an EIGENSTRAT analysis
using approximately 10 000 randomly selected SNPs from the 550K SNP
panel.15 The genomic control method was used to control for residual
effects of population structure and cryptic relatedness.16 Genome-wide
significance was recognized for P values of 5 � 10�7.17 The summary
results were combined using an inverse variance and sample size weighted
meta-analysis using METAL (http://www.sph.umich.edu/csg/abecasis/
Metal/). The meta-analysis results from the GWAS studies are available
through dbGAP (accession no. phs000215.v1).

Results and discussion

The mean serum iron concentrations were comparable across the
study populations (Table 1). Because the population examined in
this study represents older persons, the genetic effects on iron
resulting from menstrual blood loss were minimized. Polymor-
phisms associated with serum iron levels with P value less than

1 � 10�5 are listed in supplemental Table 1 (available on the Blood
website; see the Supplemental Materials link at the top of the online
article). A common polymorphism on chromosome 22 in the
transmembrane serine protease 6 (TMPRSS6) or matriptase-2 gene
reached genome-wide significance (supplemental Table 1; supple-
mental Figure 1). Variant rs855791 in exon 17 showed the strongest
association (P � 3.93 � 10�7), confirming results from a recent
GWAS study of iron levels.18 The second strongest SNP, rs4820268
on exon 13, was in linkage disequilibrium (LD) with rs855791
(r2 � 0.9), representing the same signal. Both rs855791 (P � .037)
and rs4820268 (P � .003) were significantly associated with iron
concentrations in combined analysis of WHAS I and II studies.
A meta-analysis of the 2 GWAS and the 2 replication studies
resulted in a genome-wide significant P value of 4.16 � 10�8

(rs855791) and 5.12 � 10�9 (rs4820268; Table 2). An additional
14 SNPs within 10 kb of TMPRSS6 were represented in the GWAS
panel (supplemental Table 2). The SNPs in moderate LD with the
top SNPs (r2 � 0.2-0.3 in Hapmap CEU population) were mod-
estly associated with serum iron concentrations (rs2235320,
rs5756504).

The TMPRSS6 signal affects a high proportion of the population
because the frequency of the iron-lowering allele is high (� 45%).
However, because each of the TMPRSS6 variant explains only approxi-
mately 1% of the variance in iron concentrations, other unknown genetic

Table 1. Characteristics of the 4 participating studies

BLSA (n � 713) InCHIANTI (n � 1206) WHASI (n � 375) WHASII (n � 194)

Age, y* 65.5 (14.8) 68.3 (15.5) 78.3 (8.0) 74 (2.7)

Male† 54.0 (389) 44.4 (536) — —

Iron, �g/dL* 82.9 (32.3) 83.3 (26) 77.6 (26.2) 84.9 (29.5)

Red blood cells, 106/�L* 4.6 (0.6) 4.5 (0.4) 4.3 (0.5) 4.4 (0.3)

Hemoglobin, g/dL* 13.9 (1.7) 13.8 (1.4) 13.2 (1.3) 13.5 (1.1)

Mean corpuscular volume, fL* 92.3 (4.5) 90.3 (4.8) 94.4 (6.0) 92.6 (5.1)

Hematocrit, percentage* 42.3 (5.2) 40.7 (3.5) 40.3 (4.1) 40.3 (3.2)

Ferritin, ng/mL* 94.7 (111.9) 140.7 (144.6) 118.7 (191.7) 108.0 (98.8)

Platelets, 1000/�L* 244.7 (157.4) 227.6 (67.1) 267.6 (84.4) 240.8 (56.2)

Red blood cell width, percentage* 13.3 (0.9) 13.7 (1.0) 14.3 (1.6) 13.8 (1.2)

— indicates not applicable.
*Values expressed as mean (SD).
†Value expressed as percentage (N).

Table 2. Meta-analysis of the associations of TMPRSS6 SNPs with iron and iron-related traits

InCHIANTI BLSA WHASI WHASII Meta-analysis

� (SE) P � (SE) P � (SE) P � (SE) P � (SE) P

rs855791

Iron, �g/dL 3.22 (1.05) .001 7.21 (1.64) 2.66 � 10�5 3.33 (1.93) .092 3.16 (2.73) .218 4.11 (0.77) 4.16 � 10�8

Red blood cell width, percentage �0.09 (0.04) .005 �0.12 (0.05) .004 0.03 (0.12) .662 �0.29 (0.12) .054 �0.10 (0.03) 1.13 � 10�4

Mean corpuscular volume, fL 0.57 (0.20) .007 0.39 (0.23) .040 0.19 (0.45) .519 0.11 (0.52) .927 0.44 (0.14) .001

Hemoglobin, g/dL 0.12 (0.05) .006 0.11 (0.08) .182 �0.15 (0.10) .120 0.08 (0.11) .872 0.08 (0.04) .040

Hematocrit, percentage 0.27 (0.13) .028 0.24 (0.25) .351 �0.51 (0.30) .100 �0.07 (0.32) .563 0.14 (0.10) .221

Red blood cells, n, 106/�L �0.004 (0.02) .858 0.010 (0.03) .878 �0.068 (0.03) .062 �0.010 (0.04) .772 �0.010 (0.01) .393

Platelets, 1000/�L �0.64 (2.70) .522 �7.48 (8.31) .519 0.61 (6.24) .830 1.53 (5.70) .496 �0.64 (2.19) .495

Ferritin, ng/mL 6.54 (5.68) .677 7.15 (6.56) .070 �5.48 (10.88) .294 �6.10 (10.18) .459 3.64 (3.72) .592

rs4820268

Iron, �g/dL 3.15 (1.03) .002 7.31 (1.66) 3.09 � 10�5 4.49 (1.93) .021 5.02 (2.72) .058 4.39 (0.76) 5.12 � 10�9

Red blood cell width, percentage �0.07 (0.04) .033 �0.12 (0.05) .002 0.02 (0.12) .883 �0.28 (0.12) .078 �0.10 (0.03) 3.98 � 10�4

Mean corpuscular volume, fL 0.45 (0.19) .032 0.56 (0.24) .004 0.43 (0.45) .206 0.43 (0.53) .464 0.48 (0.14) 1.86 � 10�4

Hemoglobin, g/dL 0.12 (0.05) .007 0.11 (0.08) .162 �0.08 (0.10) .423 0.06 (0.11) .970 0.08 (0.04) .020

Hematocrit, percentage 0.27 (0.12) .019 0.22 (0.26) .427 �0.25 (0.30) .425 �0.19 (0.32) .367 0.16 (0.10) .136

Red blood cells, 106/�L 0.002 (0.02) .805 �0.001 (0.03) .834 �0.049 (0.03) .187 �0.036 (0.03) .290 �0.010 (0.01) .453

Platelets, 1000/�L �0.99 (2.64) .444 �6.19 (8.39) .551 �4.53 (6.26) .405 3.85 (5.76) .260 �1.08 (2.17) .390

Ferritin, ng/mL 5.77 (5.56) .936 11.19 (6.66) .055 2.64 (10.99) .725 0.25 (10.20) .948 6.36 (3.71) .479

Effect allele rs855791 (C, average frequency � 0.59), rs4820268 (A, average frequency � 0.54).
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loci probably contribute to the variability in iron levels. Interestingly,
variants in HFE, including C282Y (rs1800562) previously described in
association with iron concentrations, were not significant in this
meta-analysis.18 We examined whether variants in other candidate genes
(CYBRD1, HAMP, SLC11A2, SLC40A1, TF, and TFRC) of iron
absorption and use were associated with iron concentrations in this study
(supplemental Table 3). After adjusting for multiple comparisons, none
of the candidate SNPs was significantly associated with iron
concentrations.

TMPRSS6 regulates iron absorption through suppression of hepci-
din antimicrobial peptide (HAMP).19-21 Hepcidin is a key regulator of
iron homeostasis that induces degradation of ferroportin (SLC40A1), the
only transporter known to facilitate elemental iron egress from macro-
phages and enterocytes.22,23 During iron deficiency, hepcidin is down-
regulated to promote ferroportin-mediated iron uptake and correct the
deficiency. Several genes are required for appropriate HAMP expres-
sion, including the hemochromatosis gene, HFE24 and hemojuvelin
(HFE2).25 The 2 leading TMPRSS6 SNPs are synonymous SNPs in the
LDL-receptor class A-like (LDLRA) domain (rs4820268) and a mis-
sense SNP within the trypsin-like serine protease domain (rs855791).
The synonymous SNP most probably is in LD with a functional SNP
within or near TMPRSS6. Functional analysis of common variants
within TMPRSS6, in particular rs855791, is warranted.

We examined whether the TMPRSS6 SNPs were associated with
other iron-related hematologic values in the 4 studies (Table 2).
Although the TMPRSS6 SNPs were not associated with anemia
prevalence (assessed using hemoglobin values), the alleles associated
with lower iron concentrations were also associated with lower mean
corpuscular volume, lower hemoglobin levels, and higher red blood cell
distribution width. Whether this genetic background is associated with
higher risk of developing iron-deficiency anemia should be tested in
future studies.

In conclusion, we confirm a previously reported TMPRSS6 locus in
association with lower serum iron concentrations. These variants were

also significantly associated with smaller red cells, lower hemoglobin
levels, and higher red blood cell distribution width. Because this gene is
directly involved in the regulation of dietary iron absorption and use, this
SNP may be an informative marker to identify a subpopulation at
increased risk of iron-restricted erythropoiesis as a consequence of
inefficient absorption of iron from dietary sources.
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