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The effects of genotype and relationship errors on linkage results are evaluated in
three of the Genetic Analysis Workshop 12 asthma genome scans. A number of
errors are detected in the samples. While the evidence for linkage is not striking
in any data set with or without error, in some cases the difference in test statistic
could support different conclusions. The results provide empirical evidence for
the predicted effects of genotype and relationship error and highlight the need for
rigorous detection and elimination of data error in complex trait studies.
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INTRODUCTION

The lack of success in complex disease linkage genome scans and their lack of
replication has been attributed to genetic heterogeneity, lack of power (sometimes due to
inappropriate analytical frameworks), over-simplistic models of oligogenic inheritance,
and the failure to allow for multi-locus models. The lack of consistency may also be due,
at least in part, to genotype error, which has recently been shown to substantially reduce
power to detect linkage [Douglas et al., 2000]. This is most pronounced in the case of
affected sib-pair studies, in which genotype error reduces sharing of alleles identical by
descent (IBD) and, therefore, decreases the test statistic for linkage [Abecasis et al,
2001]. Similarly, the effect of genotype error on the power to detect linkage with
quantitative traits depends on the specific method of sample ascertainment.
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Additionally, errors in specification of familial relationships can lead to incorrect
conclusions regarding evidence for linkage [reviewed in Epstein et al., 2000], which
further detracts from reproducibility of linkage outcomes. Several methods have been
developed that make use of genome-wide marker data for the detection of such errors
[McPeek and Sun, 2000].

For the present report, we analyzed the Genetic Analysis Workshop (GAW) 12
asthma genome scan data sets using affected relative pair methods (for qualitative traits)
and a distribution-free statistic for analysis of quantitative traits. We first analyzed the
data as they were made available for GAW12. We then examined the data for
relationship and genotype errors, corrected these errors, and re-analyzed all data sets.

METHODS
Data

The Collaborative Study on the Genetics of Asthma (CSGA), Busselton, and
German asthma data sets were analyzed. While the Busselton and German data sets
consist mainly of two-generation families, the CSGA data set includes several three-
generation pedigrees. The phenotypes used comprised asthma affection status (discrete)
and log-IgE (quantitative). The samples were analyzed separately and combined before
and after error correction. Log-IgE was standardized within each sample.

IBD Calculations

All three data sets employed sparse (10 cM) microsatellite markers. Multipoint IBD
calculations were carried out for all chromosomes using the Marshfield marker map.
Allele-sharing probabilities were calculated using the Lander and Green [1987] algorithm
as implemented in the program MERLIN [Abecasis et al., 2000]. Allele frequencies were
estimated separately within each data set, using all available genotypes. Population-
specific allele frequencies were used when analyzing the combined data set.

Analysis Methods

For assessment of asthma affection, the NPL-ALL linkage statistic [Whittemore and
Halpern, 1994] was used. For quantitative trait analyses, we used the distribution-free
method implemented in MERLIN [Abecasis et al., 2000]. This method allows for direct
comparison of the different data sets that were collected using different ascertainment
criteria, as it is designed to avoid assumptions of trait or residual normality that are
implicit in most other quantitative trait linkage tests. In can be evaluated in arbitrary
pedigrees and is robust to the method of sample ascertainment. The value of the statistic,
Zqg1L, increases when relatives with similar phenotypes share alleles IBD and decreases
otherwise. For phenotype vector y; in the /™ family, with population mean, y, the test is
constructed as:
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Pedigree Error Detection

The genetic relationship between any two individuals defines an expected pattern of
allele sharing between them. The details of this pattern can be complex and will depend
on the exact type of relationship, marker characteristics, population history, and
inbreeding. Errors in relationship specification were detected using a simple graphics-
based method that detects family member pairs where patterns of their identity-by-state
(IBS) sharing across the genome are inconsistent with their coded relationship. The
method involves plotting the mean IBS across the genome against its standard deviation,
for each relationship pairing, and locating outliers from this bivariate distribution.

Genotype Error Detection

Genotype errors were detected using the likelihood-based procedures in MERLIN
[Abecasis et al., 2000]. MERLIN uses a novel algorithm to identify genotypes that imply
unlikely recombinants in general pedigrees. After dropping each genotype, the pedigree
likelihood is re-evaluated both conditional on the current map and assuming unlinked
markers. Markers that produce relatively large changes in the first likelihood are flagged
as probable errors. In dense maps, all genotypes that introduce obligate recombinants can
be identified.

RESULTS

An illustration of the graphical output used to detect errors of relationship in these
data is shown in Figure 1. For each coded pair of individuals in the CSGA sample, the
IBS standard deviation is plotted against the IBS mean, both of which were calculated
using all available marker genotypes. For clarity, we only plot three types of relationship,
as outliers in other relationships could not be identified with a high level of certainty. The
figure shows clear mean/standard deviation relationships for each relative pair; half-sibs
form the left-most cluster, parent-offspring pairs form the tight, linear distribution in the
lower right quadrant, and full-siblings cluster in the right, top-most area. These two-
dimensional relationships clearly demarcate the empirical range for each relative pair and
thereby highlight outliers, which almost certainly reflect pedigree errors. In the data
illustrated, there are obvious erroneous full-sibling pairs (open squares) that are closely
aligned with the half-sib IBS distribution (these misclassifications would reduce allele
sharing statistics) or monozygotic (MZ) twin IBS distribution (these misclassifications
would inflate allele sharing statistics). There are also “half-siblings” (open triangles) with
genome-wide IBS resembling that of full-siblings.
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Fig. 1. CSGA relationship error detection.

Family relationship errors identified using the graphical procedure are summarized
in Table I, in which the ‘coded,” or expected, relationship is compared with the ‘true’
relationship defined on the basis of the genomic distribution of IBS mean and variance.
Three types of relationship errors are apparent in the samples: half-sibs who are actually
full-siblings, full-siblings who are actually MZ twins, and full-siblings that are actually
half-siblings. The first two of these errors are expected to increase type I error, while the
latter decreases linkage power. Interestingly, the former errors inflate, rather than deflate,
allele-sharing statistics in affected-pair analyses. In total, there are 14 familial errors in
the CSGA sample and 2 errors in the Busselton data. No relationship errors were
detected in the German collection.

Genotype error detection procedures identified 501 likely errors in the genome-scan
panels. Of these errors, 236, 170, and 95 were attributable to the Busselton, CSGA and
German collections, respectively. Overall, these errors reflect respective error rates of at
least 0.25%, 0.04%, and 0.07%. Since there are a substantial number of missing
genotypes and the maps are sparse, many undetected errors may be present. For example,
the CSGA data set has the smallest proportion of detected errors but also the greatest
proportion of missing genotypes (20%).

TABLE 1. Relationship Errors in Asthma Samples

Study Coded Predicted Number

CSGA Half sib Full sib 4
Full sib Half sib 8
Full sib MZ twin 2

Busselton Full sib MZ twin 2

No relationship errors were detected in the German sample.

}
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Table II presents the highest lod scores obtained in the genome scans. An arbitrary
cutoff of lod > 1.80 in the corrected sample was empirically selected so that several
regions could be compared before and after error removal.

The results show that genotype and relationship errors can have a substantial impact
on linkage results. The Busselton sample, which offers the most dramatic outcomes,
illustrates a gain of as much as 59% in lod score (chromosome 15; lod 1.62 vs. 2.57) as a
result of removing data points with likely errors. Conversely, the same collection shows
four loci for which the lod score is reduced slightly as a result of error removal. These
discrepancies may be e to the competing effects of lod deflation due to genotype error
versus lod inflation dugw the mislabeling of MZ twins as full-siblings. Naturally, in
these small samples the observed changes will include random fluctuations.

The lack of any detectable relationship errors in the German data, coupled with the
low genotype error rate, lends robusmess to the linkage results. Interestingly, the CSGA
data have the fewest lod scores that meet even our relaxed lod-score criterion of 1.80 (one
trait at one marker in the entire genome scan). While this may simply reflect a lack of
linkage power in this data set, it is intriguing that the CSGA also has the most relationship
errors (Table I). We find no striking results in the combined data set betfore or even after
removing error.

DISCUSSION
Pedigree errors and incorrectly assigned genotypes are known to have dramatic

consequences in linkage studies. There are a number of relationship errors in some of the
GAWI12 asthma samples and the genotyping error rates, which appear low by many

TABLE II. Lod Scores > 1.8 in Each Genome Scan

Lod before Lod after

Study Trait Chromosome/position correction correction
CSGA Q_Asthma® Chr11/69.9 1.90 1.85
Busselton Q_Asthma Chr 1/224.1 1.99 1.83
In(IgE) Chr4/117.1 1.57 1.88
Q_Asthma Chr 6/ 148.3 2.51 2.22
Q_Asthma Chr7/97.4 2.99 2.77
Q_Asthma Chr 10/19.0 2.05 2.00
In(IgE) Chr 15/22.0 1.62 2.57
Germany In(IgE) Chr2/229.2 2.96 2.97
In(IgE) Chr 12/119.8 2.84 2.71
In(IgE) Chr 15/86.0 1.76 1.80
Combined In(IgE) Chr2/96.4 1.80 1.82
Asthma Chr6/49.3 1.83 1.85
In(IgE) Chré6/52.9 1.88 1.93
Q_Asthma Chr11/67.5 2.08 1.97
Q Asthma Chr12/75.1 2.04 2.00

*The phenotype Q_Asthma was coded as 1/-1 for affected/unaffected and analyzed using the distribution-
free quantitative trait test.
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standards (all < 1%), are still of sufficient magnitude to create substantial losses in
linkage power. Assessment of the effects of such error on the GAW12 asthma data sets
revealed some large changes in linkage results. While none of the data sets showed
striking evidence for linkage with or without error, the scale of the test statistic was such
that different conclusions about the presence or absence of linkage could have been
reached. The outcomes emphasize the necessity of rigorous data examination in linkage
studies of multifactorial traits.
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