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An Evaluation of the Replicate Pool Method: Quick Estimation
of Genome-Wide Linkage Peak p-Values

Janis E. Wigginton� and Gonc-alo R. Abecasis

Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, MI

The calculation of empirical p-values for genome-wide non-parametric linkage tests continues to present significant
computational challenges for many complex disease mapping studies. The gold standard approach is to use gene dropping
to simulate null genome scans. Unfortunately, this approach is too computationally expensive for many data sets of interest.
An alternative, more efficient method for sampling null genome scans is to pre-calculate pools of family-specific statistics
and then resample from these replicate pools to generate ‘‘pseudo-replicate’’ genome scans. In this study, we use simu-
lations to explore properties of the replicate pool p-value estimator p̂RP and show that it provides an excellent approximation
to the traditional gene-dropping estimator for significantly less computational effort. While the computational efficiency of
the replicate pool estimator is noticeable in almost all data sets, by applying the replicate pool method to several previously
characterized data sets we show that savings in computational effort can be especially significant (on the order of 10,000-
fold or more) when one or more large families are analyzed. We also estimate replicate pool p-values for the schizophrenia
data described by Abecasis et al. and show that p̂RP closely approximates gene-drop p-values for all linkage peaks reported
for this study. Lastly, we expand upon Song et al.’s previous work by deriving a conservative estimator of the variance
for p̂RP that can easily be computed in practical settings. We have implemented the replicate pool method along with
our variance estimator in a new program called Pseudo, which is the first widely available automated implementation of
the replicate pool method. Genet. Epidemiol. 30:320–332, 2006. r 2006 Wiley-Liss, Inc.
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INTRODUCTION

Evaluating the statistical significance of genome
scan linkage peaks is important, not only to
prioritize regions for follow-up studies, but also
to critically evaluate the success of the gene-
mapping experiment [Ott, 1989]—if the results
are compatible with the null, then alternative
gene-mapping approaches should be considered
or additional samples should be collected to
ensure adequate power.

The problem is deceptively simple: given an
observed genome-wide peak for a linkage statistic,
we would like to determine the probability of
observing a greater or equal peak statistic by
chance. While fairly straightforward in principle,
this problem is quite challenging because the null
distribution of peaks can be difficult to charac-
terize for most linkage statistics. This null distri-

bution depends on the type of families being
examined, the distribution of affected and un-
affected individuals within these families, the
degree of polymorphism and spacing of markers
available for analysis, the pattern of missing
genotype data, and—naturally—the statistic of
interest [Ott, 1989]. In practice, even approxi-
mate representations of the null distribution,
constructed using either analytical or empirical
methods have proven very useful [Teng and
Siegmund, 1997; Kruglyak et al., 1998; Bacanu
et al., 2005].

One of the earliest interpretations for a genome
scan linkage peak was presented by Newton
Morton [1955], in the context of LOD score
analysis. Morton used the prior probability of
linkage to reason that for a simple Mendelian trait
a LOD score of 3.0 would yield a false positive
rate of 5%. Since then, the focus of gene mapping
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has shifted from simple Mendelian traits to more
complex traits, and gene mapping strategies—
both in vitro and in silico—have undergone
many changes. Nevertheless, Morton’s argument
is simple, and the result remains relatively
accurate in many settings [Lander and Kruglyak,
1995; Morton, 1998; Elston, 1998].

Nowadays, most linkage studies rely on
non-parametric statistics, such as the NPL score
[Whittemore and Halpern, 1994; Kruglyak et al.,
1996] or the Zlr statistic [Kong and Cox, 1997]. It is
well known that appropriate significance thresh-
olds for these statistics depend on features of each
specific data set, such as marker informativeness
and spacing as well as the family structures
being examined [Kruglyak et al., 1996; Sawcer
et al., 1997; Kong and Cox, 1997; Kruglyak and
Daly, 1998].

Ott [1989] advocated the use of Monte-Carlo
approaches for evaluating the significance of
observed linkage peaks. When carefully designed
and implemented, Monte-Carlo methods are
computationally intensive but can more accu-
rately reflect the ‘‘quirks’’ of each data set and
analysis strategy. In their simplest form, these
Monte-Carlo methods use hundreds or thousands
of gene-dropping simulations to generate replicate
genomes which can then be used to reproduce
the null distribution of any statistic of interest.
In the context of linkage analysis, calculation of
the linkage statistic on each of these replicate
genomes can still require substantial amounts of
computing power for many interesting data sets.

In recent years, the development of efficient
Monte-Carlo algorithms for evaluating signifi-
cance levels has become an active area of research.
One area of focus has been the development of
algorithms that can estimate accurate significance
levels using small numbers of replicates. Several
promising approaches include the use of sequen-
tial stopping rules that analyze fewer replicates
to evaluate less significant findings [Besag, 1991],
and a replicate pool method, originally suggested
by Terwilliger and Ott [1992] and revisited in
detail by Song et al. [2004]. Because the replicate
pool method has the virtue of being unbiased,
extremely efficient and readily implemented
using output from existing linkage packages, we
believe that it is an extremely attractive option.

In this article, we describe and evaluate the
accuracy and computational efficiency of algo-
rithms for evaluating the significance of single or
multiple genome scan linkage peaks using the
replicate pool method. The method can be applied

to multiple correlated traits, and we describe and
evaluate a practical strategy for quantifying the
accuracy of estimated significance levels by exten-
ding the work of Song et al. [2004]. Our methods
are implemented in freely available computer
code and, to our knowledge, are the first widely
available, automated implementation of the repli-
cate pool method for estimating genome scan
significance levels.

METHODS

BACKGROUND

Data for a genome scan will generally include
genotype and phenotype information for a set
of related individuals. Phenotypes P may include
measurements for one or more traits and geno-
types G will usually include a set of markers
distributed throughout the genome along a
marker map M. The goal is to determine if, within
each family, phenotypically similar individuals
share particular chromosomal regions more fre-
quently than expected by chance. A typical test
of linkage assesses evidence for a genetic effect
within a collection of n families by constructing a
combined linkage statistic (CLS)

CLS ¼ hðZ1;Z2; . . . ;ZnÞ

where family-specific scores Z1;Z2; . . . ;Zn quantify
evidence for genetic sharing within each family
1 . . . n.

If Pf and Gf represent, respectively, the observed
phenotype and genotype data for family f, a score
for the family may be defined as

Zf ¼ gðPf ;Gf ;M;Rf Þ

where g measures genetic sharing within the
observed family data relative to what would be
expected in the absence of any genetic effect,
given family relationships Rf and marker map M.

Since the true null distribution of the CLS for
a specific data set may be unknown, significance
is often assessed empirically. An empirical null
distribution can be generated by repeating the
original linkage scan in simulated data sets that
reproduce the patterns of marker informativeness,
spacing and missing genotypes in the original
data [Terwilliger and Ott, 1994].

REPLICATE POOL APPROACH

Since generation of the empirical null distribu-
tion for h calls for recalculation of the CLS profile
thousands of times, any algorithmic improvement
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that targets critical portions of this calculation can
significantly impact overall computation time. For
the CLS statistic, the calculation of family-specific
scores tends to be the rate-limiting step primarily
because ambiguities in inheritance patterns due
to non-informative markers or missing data make
it necessary to integrate over many alternatives
compatible with the observed data. The replicate
pool method (illustrated in Fig. 1) specifically
targets this bottleneck by performing the costly
calculation for only a small set of replicates. Once
initial pools of family-specific scores have been
pre-calculated, additional ‘‘pseudosimulations’’
are generated by independently sampling one
score for each family from its own pool of pre-
calculated statistics and recalculating the overall
score on the selected sample:

CLSRP ¼ hðZ1j;Z2k; . . . ;ZnlÞ:

Here, Zfp represents the pth replicate for family f in
the pool of pre-calculated family-specific scores.

APPLICATION OF THE REPLICATE POOL
METHOD TO KONG AND COX TESTS

In recent years, non-parametric tests using the
Kong and Cox linear model [Kong and Cox, 1997]
have gained general acceptance and are widely
used in complex disease mapping studies. The
idea is to use a scoring function Sf [Whittemore

and Halpern, 1994; McPeek, 1999] that ranks each
inheritance vector according to the evidence for
linkage it provides. Given a specific choice of
scoring function, evidence for linkage within a
family is modeled by a normalized expected score:

Zf ¼ ðEðSf jGÞ � mf Þ=sf

where mf and sf represent the expected mean and
standard deviation of the statistic Sf under the
assumption of no linkage. Calculating E(Sf|G)
involves iterating over possible inheritance vec-
tors and the number of inheritance vectors to
be considered rises exponentially with family size.
In some data sets, this step can require several
hours of processor time to analyze. When there is
no uncertainty about inheritance, the scores Zf are
normally distributed with mean 0 and variance 1,
and overall evidence for linkage can be evaluated
by simply taking a weighted sum of the individual
statistics [Kruglyak et al., 1996]. The approach of
Kong and Cox [1997] was specifically developed
to deal with settings where there is uncertainty
about inheritance because the available genetic
markers are not fully informative. Overall evi-
dence for linkage is modeled by finding the value
of an allele sharing parameter dhat that maximizes

LODKC ¼ �f log10ð1þ dhatZf Þ:

At a single point in the genome, the resulting LOD
score statistic is approximately distributed as a

Fig. 1. Replicate pool method. Starting with a pool consisting of a small number of pre-calculated family-specific scores, ‘‘pseudo-

simulations’’ are generated by randomly sampling one z-score per family and recalculating the overall linkage score.
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50:50 mixture of w2/2 log(10) and a point mass
at zero. However, the distribution of genome-wide
peak statistics is less clear since the dependence
between neighboring locations is influenced both
by family structure and marker informativeness.

APPLICATION TO GENOME-WIDE
LINKAGE STATISTICS

Although we have considered only a single
analysis position up to this point in the discussion,
in most settings, multiple positions located
throughout the genome will be analyzed. The
observed result will be a profile of linkage scores

PROF ¼ ðCLS1;CLS2;CLS3; . . . ;CLSpÞ

located at p positions along the genome. This
profile will include a linkage peak whenever the
statistic reaches a local maximum. We denote the
highest of these local maxima as M1, the second
highest as M2, and so on, to define a set of peaks
ðM1;M2; . . . ;MkÞ. To properly evaluate the signi-
ficance of these linkage peaks, it is crucial to
account for the correlation between linkage
statistics at neighboring positions. The replicate
pool method is especially attractive in this setting
since the computational cost of gene-dropping
simulations for whole genome scans rapidly
becomes prohibitive.

To extend the basic approach to multiple
positions, instead of sampling individual statistics
we sample blocks Bcf of z-scores for family f for
all positions along chromosome c. Pseudo-replicate
genome scans are constructed by sampling one
block of z-scores for each family and chromosome
and then calculating Kong and Cox LODs for all
p analysis positions. Each ‘‘pseudo-simulation’’
now replicates a genome scan drawn from the null
distribution of PROF and results in a profile of
simulated LOD scores.

ESTIMATION OF SIGNIFICANCE

Once the empirical distribution for the lod score
profile (PROF) has been constructed (either by
gene-dropping or the replicate pool method),
empirical p-values for observed peaks can be
assigned by ranking all maxima of interest in
descending order ðM1;M2; . . . ;MkÞ. A p-value for
the highest score (M1) is calculated as

pðM1Þ¼NðmaxðCLSÞ>M1Þ=N�PðmaxðCLSÞ>M1Þ

where NðmaxðCLSÞ > M1Þ is the number of simu-
lated genome scans where the maximum lod score
(max(CLS)) is greater than M1.

As an alternative to considering only the highest
peak, we can consider a group of peaks jointly
[Wiltshire et al., 2002]. For instance, to evaluate
whether more peaks exceed Mj than expected by
chance, we calculate

pðM1;M2; . . . ;MjÞ ¼ NðmaxjðCLSÞ > MjÞ=N

� PðmaxjðCLSÞ > MjÞ

where maxj(CLS) is the jth highest independent
linkage score for a simulated genome. If this
probability is small, we reject the null hypothesis
that all peaks occurred by chance and accept the
alternative hypothesis that at least one of the
peaks is real. This approach can provide for a
more powerful linkage test when there are multi-
ple loci of modest effect, rather than a single large
locus. For simplicity, we treat linkage peaks as
independent if and only if they occur on different
chromosomes; however, our approach can be
extended to more flexible settings.

VARIANCE FOR THE REPLICATE
POOL METHOD

An important feature of the replicate pool
method is that the variance structure for the
replicate pool estimator (p̂RP) differs from the
gene-dropping estimator (p̂GD). For N simulations,
the distribution of N�p̂GD will be Binomial(N, p)
and

Varðp̂GDÞ ¼ pð1� pÞ=N:

The variance of p̂RP is harder to estimate because
family-specific statistics are reused, inducing a
correlation among simulated outcomes. Song et al.
[2004] studied the variance structure of p̂RP. They
considered settings where NGD gene dropping
simulations are done to estimate p̂GD, and then
family-specific outcomes of these gene-dropping
simulations are resampled to generate NRP pseu-
do-replicates and estimate p̂RP. They demon-
strated that when NRP�NGD, the pseudo-
replicate-based p-value is more efficient. They
also showed that

Varðp̂RPÞ � p=NRP þ pð�f�cWfc �NF �NC � pÞ=NGD

� pð�f�cWfc �NF �NC � pÞ=NGD

ðwhen NRP is largeÞ

ð1Þ

where Wfc is the variance weight for family f on
chromosome c, NF is the number of families and
NC is the number of chromosomes. Their results
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lead to rough bounds on Varðp̂RPÞ of

pð1� pÞ=NRPoVarðp̂RPÞopð1� pÞ=NGD

since the summation in equation (1) must be
strictly positive and p (1–p)/NRPop/NRP.

FAMILY VARIANCE WEIGHTS

Family variance weights (Wfc) vary between 0.0
and 1.0 and represent the impact of each sampling
unit on the final linkage statistic. In our case, the
sampling units consist of a chromosome/family
pair combination. Intuitively, we expect that data
for larger pedigrees and longer chromosomes
might have a greater impact in the overall linkage
profile. Formally, Song et al. [2004] defined Wfc

by considering two abstract samples from the
replicate pools, say A and A�, that include the
same data for sampling unit fc but differ in all
other respects, say A\A�5 fAfcg. For a specific
family f and chromosome c, they then defined
Wfc 5 P(PROF(A�) rejects H0|PROF(A) rejects H0)
when A\A�5 fAfcg.

Thus, Wfc will be large and close to 1.0 if
sampling unit fc alone can shape the linkage
profile. Conversely, if sampling unit fc has
little impact on the linkage profile, Wfc will be
small and close to the unconditional probability
that PROB(A�) rejects H0.

ESTIMATION OF FAMILY VARIANCE WEIGHTS

Exact analytical calculation of these variance
weights is difficult because our test statistic is not
a simple sum of the individual test statistics.
However, approximate confidence bounds can
be calculated using a conservative estimator that
relies on information that can be easily gathered
while generating pseudo-replicate samples. After
testing a number of candidates, we found that
a reasonably accurate but conservative estimator
for the variance weight is

Ŵfc ¼ �rðprfcÞn
þ
rfc=Nþ

where

prfc ¼
nþrfc=nrfc when nrfc40

0 when nrfc ¼ 0:

�

In these formulae, N1 is the total number of
pseudo-replicate genome scans that reject H0,
r indexes the blocks of statistics in each replicate
pool, n1

rfc is the number of pseudo-replicate
genome scans that reject H0 and include block
r from pool fc and nrfc is the number of pseudo-

replicate genome scans that include block r from
pool fc (whether or not they reject H0).

SIMULATION STUDIES

We performed simulations to evaluate the repli-
cate pool method and compare it to gene dropping.
For all simulations, replicate pool p-values were
calculated using our implementation of the replicate
pool method (Pseudo, freely available with C11

source code at http://www.sph.umich.edu/csg/
abecasis/pseudo/). Gene-dropping p-values were
estimated using replicates generated by Merlin’s
[Abecasis et al., 2002; Abecasis and Wigginton,
2005] simulation engine and analyzed by Merlin’s
implementation of the Kong and Cox linear model
with Sall as the scoring function. Replicate pool
p-values were estimated by generating pseudo-
replicate genome scans, each constructed by sam-
pling linkage statistics one chromosome and family
at a time. All replicate pool p-values were estimated
solely from simulated pseudo-replicate genome
scans, excluding the initial null replicates. Each
run of the replicate pool method was based on a
newly simulated pool of z-scores.

Comparision of p-values. To compare the dis-
tribution of p̂RP and p̂GD, we simulated samples
with 100 nuclear families in four different config-
urations: (1) two affected siblings and both
parents genotyped, (2) three affected siblings
and both parents genotyped, (3) three affected
siblings and neither parent genotyped and (4)
a mixed sample with untyped parents containing
55 families with two affected siblings, 35 families
with three affected siblings and five families with
four affected siblings. For each sample, p̂GD was
estimated once using 10,000 gene-dropping simu-
lations. This estimate was compared to 50 inde-
pendent point estimates of pRP each obtained
by generating 50,000 pseudo-replicate genome
scans by sampling from a pool of 50 initial gene-
dropping analyses. This comparison was per-
formed for each of three different maps: (1) a
1 cM microsatellite map (2) a 10 cM microsatellite
map and (3) a 1 cM SNP map.

For each map type, markers were evenly spaced
along 22 autosomes, with lengths of 289, 270, 235,
216, 213, 189, 198, 172, 179, 180, 163, 175, 137, 127,
130, 127, 142, 130, 116, 108, 75 and 72 cM for
chromosomes 1–22, respectively. Markers for
microsatellite maps were simulated with a mini-
mum of seven and a maximum of 10 alleles, with
the number of alleles for each marker chosen
randomly from this range. Average heterozygosity
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for microsatellites was approximately 84%. All
SNP maps were simulated with two alleles per
marker and average heterozygosity of 45%. For
each map type, allele frequencies were simulated
by randomly selecting a number within a res-
tricted range and then normalizing all values by
their sum. This guaranteed that simulated allele
frequencies fell in reasonable ranges compared to
those we have observed in experimentally derived
data and that overall frequencies summed to 1.0.

Applied example. We also compared p-values
estimated by the replicate pool method to
reported gene-drop p-values for a previously
characterized data set [Abecasis et al., 2004a].
The data consist of 143 Afrikaner schizophrenia
families ranging in size from 3 to 16 individuals
and including 137 affected relative pairs (includ-
ing 79 parent-child pairs, 35 sib pairs, 15 avun-
cular pairs, 4 grandparent-grandchild pairs, and
4 cousin pairs). Evaluated phenotypes included
three nested phenotypic liability classes consisting
of core schizophrenic phenotypes (LCI), indivi-
duals diagnosed with a psychotic disorder (LCII)
and individuals diagnosed with any psychiatric
disorder (LCIII). Thirty-four of 143 families are
informative for linkage and include 62, 81, and 100
individuals in LCs I, II, and III, respectively.
Remaining individuals are used for allele fre-
quency estimation. Genotypes were collected
for 388 microsatellites composed primarily of tri-
nucleotide and tetranucleotide repeats with aver-
age spacing of 9 cM (including one gap of420 cM)
and average heterozygosity of .76. The entire
genotyped sample included 173, 205, and 253
individuals in LCs I, II, and III, respectively.

Significance for all LOD score peaks 41.0 was
determined in the original study using 5000 gene-
dropping simulations. We compare the most
significant results in the original study with those
obtained using an initial pool of 50 z-score repli-
cates per family to generate 50,000 pseudo-
replicate genome scans.

Computational efficiency. To quantify compu-
ting resources we ran 20 gene-dropping simula-
tions for each of three data sets. We then
resampled the resulting statistics to generate
100,000 pseudo-replicate genome-scans. We recor-
ded the total running time, average running time
per simulation and memory use for each stage
of the analysis. Running times for N 5 1000, 10,000
and 100,000 gene-dropping simulations were
extrapolated from these simulations.

Relative efficiency of replicate pool and gene-
dropping methods. We assessed relative effi-

ciency of the two methods by comparing sample
variances of p̂RP and p̂GD in samples containing
16–128 nuclear families. For each sample, we
generated either 20 or 50 gene-dropping replicates
and performed linkage analysis on each replicate.
Linkage results were used to calculate p̂GD and
family-specific z-scores were saved and used
to seed subsequent runs of the replicate pool
method, each generating 100,0000 pseudo-repli-
cates to estimate p̂RP. This analysis was repeated
50 times (with each run using a new set of seed
replicates) allowing us to evaluate the empirical
variance of p̂RP and p̂GD for each combination of
family size, number of initial replicates and LOD
score threshold. Finally, relative efficiency was
defined as RE 5 Var(pGD)/Var(pRP).

Development of family weight estimator.
Although direct comparison of estimates to true
variances is obviously the better gauge of perfor-
mance for a family weight estimator, exhaustive
testing was computationally prohibitive for all
candidate estimators. Instead, we constructed a
test scenario (detailed in supplemental informa-
tion) where true weights could be calculated
directly from the data. By comparing true weights
to those predicted by each candidate estimator
under a wide variety of sampling conditions, we
were able to refine our selection to several
reasonable estimators that were conservative
under almost all sampling conditions.

Variance estimation for p̂RP in genome scan
data. Our final selection of a family weight
estimator Ŵfc was tested by directly comparing
estimated variances for p̂RP to the empirical variance
of p̂RP estimated from simulation. The behavior
of STDRP (the estimated standard deviation of
p̂RP with family weight probabilities estimated by
Ŵfc), was examined for various initial pool sizes,
number of families and pseudo-replicates.

RESULTS

COMPARISON OF p-VALUES

We first checked whether results obtained using
p̂RP accurately reproduce those obtained with
p̂GD. Our simulations suggest that the p-values
estimated using p̂RP (the replicate pool statistic)
provide an extremely good approximation to the
p-values estimated using p̂GD (the more computa-
tionally intensive gene-dropping statistic). Table I
shows estimated significance levels for various
LOD score thresholds estimated using either p̂RP

or p̂GD for 1 cM microsatellite, 1 cM SNP, or 10 cM
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microsatellite maps. In all cases, analysis was
carried out using a 1 cM grid. In only one instance
did the average of the replicate pool p-values fall
outside the 99% confidence interval for the gene
drop p-value. This was the p-value for the
probability of obtaining a LOD43.5 using a 1 cM
SNP map in families including three genotyped
offspring and no parental genotypes (where the
average of p̂RP 5 .01896 but p̂GD 5 .0220). Subse-
quent simulation work gave gene-drop estimates
with an average of p 5 .0201, indicating that

the original estimate of the gene-dropping p-value
fell on the extreme end of the true confidence
interval.

APPLIED EXAMPLE USING RANKED p-VALUES

As an additional test, we compared p-values
predicted by the replicate pool method to reported
significance levels for an entire set of linkage
peaks from a published study [Abecasis et al.,
2004a]. As before, the distribution of p̂RP was

TABLE I. Comparison of p-values estimated using either gene-dropping or replicate pools

Family configuration
LOD

threshold

Gene-dropping p-value
(NGD 5 10,000)

Replicate pool p-value
(50 trials each with NGD 5 50, NRP 5 50,000)

pGD SE(pGD) Estimates from first five trials
Mean

estimate SD

1 cM map, 7– 10 alleles per marker
. . .2 children1parents genotyped 3.0 .1132 .00317 (.10220, .11126, .11448, .11792, .11220) .11378 .005833

3.5 .0382 .00192 (.03408, .03854, .03944, .04003, .03862) .03852 .002369
4.0 .0115 .00107 (.01184, .01292, .01334, .01320, .01234) .01292 .009300

. . .3 children1parents genotyped 3.0 .1035 .00305 (.10646, .10798, .08958, .09030, .09802) .09976 .005379
3.5 .0374 .00190 (.03598, .03690, .02906, .02972, .03448) .03381 .002238
4.0 .0122 .00110 (.01176, .01206, .00938, .01008, .01076) .01114 .000804

. . .3 children1parents not genotyped 3.0 .0876 .00283 (.09158, .09672, .09490, .08870, .08492) .08727 .004744
3.5 .0316 .00175 (.03090, .03264, .03328, .03022, .02798) .02948 .002035
4.0 .0110 .00104 (.00950, .01164, .01032, .00984, .00906) .00963 .000794

. . .Mixed family sample 3.0 .0926 .00290 (.09244, .09016, .08922, .09524, .09310) .09453 .004971
3.5 .0312 .00174 (.03242, .03042, .03076, .03188, .03194) .03242 .002105
4.0 .0100 .00099 (.01062, .00980, .01012, .01042, .01184) .01088 .000974

1 cM SNP map, 7– 10 alleles per marker
. . .2 children1parents genotyped 3.0 .0891 .00285 (.09260, .08202, .03324, .08088, .08534) .09029 .005701

3.5 .0307 .00173 (.03118, .02714, .03074, .02734, .03016) .03088 .002239
4.0 .0103 .00101 (.01004, .00882, .01064, .00906, .00928) .01021 .000887

. . .3 children1parents genotyped 3.0 .0775 .00267 (.08594, .08358, .07663, .08542, .08144) .08239 .003898
3.5 .0240 .00153 (.02930, .02832, .02594, .02920, .02746) .02767 .001620
4.0 .0081 .00090 (.01074, .00950, .00792, .00924, .00906) .00968 .000791

. . .3 children1parents not genotyped 3.0 .0602 .00238 (.05470, .05836, .05314, .05572, .06004) .05757 .003209
3.5 .0220 .00147 (.01888, .01922, .01758, .01714, .01964) .01896 .001383
4.0 .0064 .00080 (.00596, .00668, .00588, .00588, .00662) .00612 .000571

. . .Mixed family sample 3.0 .0607 .00239 (.06394, .05620, .06058, .05568, .06588) .06056 .004876
3.5 .0191 .00137 (.02000, .01958, .02066, .01798, .02180) .02019 .001744
4.0 .0051 .00071 (.00658, .00660, .00682, .00558, .00692) .00660 .000653

10 cM map 7-10 alleles per marker
. . .2 children1parents genotyped 3.0 .0446 .00206 (.04124, .05060, .04044, .04298, .04712) .04461 .003267

3.5 .0157 .00124 (.01300, .01660, .01426, .01398, .01576) .01468 .001138
4.0 .0045 .00067 (.00414, .00508, .00420, .00508, .00476) .00472 .000437

. . .3 children1parents genotyped 3.0 .0378 .00191 (.03808, .03872, .03758, .04348, .04098) .03973 .002809
3.5 .0125 .00111 (.01238, .01158, .01184, .01402, .01314) .01278 .001081
4.0 .0031 .00055 (.00374, .00366, .00392, .00490, .00338) .00411 .000424

. . .3 children1parents not genotyped 3.0 .0353 .00184 (.03942, .03206, .03350, .03542, .03238) .03397 .002331
3.5 .0098 .00099 (.01244, .01014, .01054, .01146, .00990) .01091 .008380
4.0 .0037 .00061 (.00432, .00324, .00436, .00384, .00314) .00348 .003720

. . .Mixed family sample 3.0 .0387 .00193 (.03838, .04000, .03820, .03492, .03348) .03709 .002956
3.5 .0134 .00115 (.01280, .01402, .01286, .01124, .01112) .01216 .001206
4.0 .0032 .00056 (.00444, .00468, .00410, .00360, .00334) .00401 .000498

Entries in the column labeled ‘‘Estimates from trials 1–5’’ are p-values estimated by the first five of 50 trials of the replicate pool method.
All 50 trials were used to estimate the overall mean and standard deviation for the statistic.
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represented by 50 trials of the replicate pool
method, each using 50 initial replicates to generate
50,000 pseudo-replicate genome scans. Table II
compares this distribution to reported values of
p̂GD calculated from 5,000 null replicates for each
of three liability classes. For two outcomes (the
probability of obtaining 3 peaks with LOD41.12
for LCIII and the probability of obtaining three
peaks with LOD41.46 for LCI) the average p̂RP

fell outside of the 95% confidence interval of p̂GD.
For another outcome (probability of obtaining two
or more peaks with LOD41.98 for LCI), the
average p̂RP fell outside the 99% confidence
interval for p̂GD, and we repeated the original
gene-drop simulation three times to obtain a
better sense of the true distribution of p̂GD. These
simulations produced p-value estimates of .04006,
.03119 and .02879, which suggests that the original
published estimate was extreme and that the
average predicted by p̂RP (.03099) actually fell
well within reasonable confidence bounds for p̂GD.

COMPUTATIONAL EFFICIENCY
FOR THE REPLICATE POOL METHOD

The replicate pool method is an adaptation of
the gene-dropping method that replaces a com-
putationally intensive step (the calculation of
z-scores for individual families) with a much less
demanding procedure (simple resampling of pre-
calculated z-scores). Logically, it is to be expected
that the replicate pool method will always be
more computationally efficient than gene-drop-

ping. While our simulation work confirms this
intuition, we also find that the family struc-
ture and proportion of missing data for a data
set, along with characteristics of the marker map,
strongly influence relative computational effi-
ciency of the two methods.

Table III shows processor times required to
implement each method in three data sets with
differing family size distribution and marker map
characteristics. A striking feature of these results is
the marked computational savings that are possi-
ble when the replicate pool method is used to
analyze data sets containing large families. For
the data sample described in Abecasis et al.
[2004b] which includes four large families with
30, 26, 24 and 23 individuals respectively, we were
able to generate 20 seed replicates and perform
100,000 pseudo-simulations in approximately 8.3
days total CPU time. In contrast, completion of
the same number of gene-dropping simulations
would have required more than a century of
processor time. In addition, note that although
each seed replicate required up to 2.6 GB of
memory to analyze (due to requirements of using
the Lander–Green algorithm to represent inheri-
tance vector space), generating and processing
100,000 pseudo-replicate genome scans required
o50 Mb of RAM (most of it used to generate
lookup tables of the results of the initial gene-
dropping simulations). When families are large
or factors that make inheritance patterns ambig-
uous (such as missing data or uninformative
markers) are present, we expect the replicate pool

TABLE II. Comparison of gene-dropping and replicate pool p-values for schizophrenia data set

Outcome

Gene-dropping p-value
(NGD 5 5000)

Replicate pool p-values
(50 trials each with NGD 5 50, NRP 5 50,000)

pGD SE(pGD) Estimates from trials 1–5 Mean SD

LCI
31peaks with LOD41.46 .230 .00595 (.23218, .24388, .23704, .24866, .21750) .24257 .015560
21peaks with LOD41.98 .060 .00336 (.02878, .03108, .03134, .03312, .03068) .03099 .002523
Overall peak LOD42.28 .072 .00366 (.07244, .07632, .07292, .07792, .06972) .07390 .003839

LCII
31peaks with LOD41.04 .887 .00448 (.89236, .89600, .89398, .89908, .87342) .89552 .010430
21peaks with LOD41.84 .171 .00532 (.17228, .17782, .17704, .18604, .15950) .17907 .010335
Overall peak LOD43.21 .006 .00109 (.00638, .00776, .00800, .00690, .00724) .00751 .000607

LCII
31peaks with LOD41.12 .771 .00594 (.77566, .78574, .78124, .79380, .76776) .78502 .015703
21peaks with LOD42.20 .035 .00260 (.03508, .03762, .03720, .03896, .03450) .03667 .002829
Overall peak LOD43.30 .007 .00118 (.00886, .00962, .00946, .00864, .00946) .00923 .000709

Entries in the column labeled ‘‘Estimates from trials 1–5’’ are p-values estimated by the first five of 50 trials of the replicate pool method.
All 50 trials were used to estimate the overall mean and standard deviation for the statistic.
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method will be significantly more efficient than
gene-dropping.

Once family z-scores have been calculated (in the
case of gene-dropping) or selected from a pool
of pre-calculated scores (in the case of replicate
pool method), the two methods are algorithmically
equivalent. In each case, the maximum likelihood
estimate of delta is determined and the linkage score
is calculated at each position. Thus, factors that
impact the efficiency of standard linkage analysis at
this stage of the algorithm (i.e. number of analysis
positions and number of families) have a similar
influence on computation time of both methods.

RELATIVE EFFICIENCY OF REPLICATE POOL
METHOD AND GENE-DROPPING METHOD

Song [2004] reported that for a fixed computa-
tional effort, p̂RP will be more efficient than p̂GD.
The simulation results presented in Table IV
essentially confirm these conclusions; namely that
even using a small pool of gene-drop simulations

to generate pseudo-replicate genome-scans yields
a p-value estimate that is much more accurate.
They also suggest that relative efficiency of the
p̂RP estimator increases dramatically for smaller
p-values. For instance, in samples with 128
families and 20 initial replicates, relative effi-
ciency is fairly modest (RE 5 11.68) for a lod score
threshold of 2.0 (average p̂RP 5 .45366), becomes
somewhat more pronounced (RE 5 93.88) for a
threshold of 3.0 (average p̂RP 5 .06223) and in-
creases sharply (RE 5 653.1) for a threshold of 4.0
(average p̂RP 5 .00667). Interestingly, our results
also suggest that for a sample containing families of
similar size, only a few seed replicates (e.g. 20) are
required when the number of families is relatively
large (e.g. 128) while for smaller sample sizes, it
appears desirable to have more seed replicates.

In practice, it can be helpful to bear in mind that
these results are an upper bound—if fixed
computational effort is implicit to the comparison,
actual relative efficiency of pGD and pRP will
depend on the underlying data set. This relation-
ship can best be understood in terms of the
computational efficiency parameter

RREP ¼ ð#pseudo-replicates calculated=

time period to add 1 gene

-dropping replicateÞ

which measures the number of pseudo-replicates
that can be calculated in the time required to
generate and analyze one gene-dropping replicate.
In our experience, this parameter can range from
10 to 100,000 or more. For data sets where RREP is
high (e.g. Abecasis, 2004b with RREP 5 40,821), the
relative efficiency of pGD and pRP should be on the
order of that presented in Table IV, since accumula-
tion of even a few extra gene-dropping replicates
will require almost as much computational effort
as accumulating several hundred thousand pseudo-
replicates. For data sets with more modest values
of RREP, relative efficiency of the two estimators
(assuming fixed computational effort) will fall in
more moderate ranges.

CONVERGENCE OF VARIANCE ESTIMATES
IN GENOME SCAN DATA

Although Ŵfc has the advantage of conserva-
tively estimating family weights and variance for
p̂RP, the tradeoff is that both Ŵfc and STDRP

converge somewhat slowly and large numbers of
pseudo-replicate samples are required to remove
the upward bias in Ŵfc and therefore STDRP.
Figure 2 illustrates the convergence behavior of

TABLE III. Comparison of processor time and memory
requirements for the replicate pool and gene-dropping
methods

Abecasis,
2004a

Abecasis,
2004b

Faraone,
2005

Data set characteristics
Number of families 143 126 60
Average Family Size 3.36 7.56 7.36
Maximum Family Size 16 30 21
Analysis Positions 370 728 6689

Processor time required for
replicate pool method

Generate 20 seed replicates 10 m 30 s 7 d 8 h 15 d 11 h
Process 1,000 pseudo-

simulations
5 m 30 s 12 m 55s 1 h 2 m

Process 10,000 pseudo-
simulations

33 m 17 s 2 h 57 m 10 h 2 m

Process 100,000 pseudo-
simulations

5 h 6 m 22 h 42 m 4 d 4 h

Estimated processor times for gene
dropping method

Execute 1,000 gene dropping
simulations

8 h 50 m 366 d 773 d

Execute 10,000 gene dropping
simulations

88 h 12 m 10 yr 21 yr

Execute 100,000 gene dropping
simulations

36 d 18 h 4100 yr 4220 yr

Memory requirements
To process 100,000

pseudo-simulations
9.9 M 25.7 M 45.7 M

For each gene-dropping
simulation

9 M 2.6 G 1.9 G
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STDRP with increasing number of pseudo-repli-
cates for the values of p̂RP reported in Table I
corresponding to family configuration 1 (2 children
+ parental genotypes) and a 10 cM microsatellite
map. For each graph, the line in red marks the
sample standard deviation and blue marks the
estimated standard deviation. For these particular
p-values (p 5 .04461, .01468, and .00472), conver-
gence required several hundred thousand repli-
cates. Furthermore, for all settings considered, the
asymptotic limit of STDRP conservatively estimated
the sample standard deviation. In a practical sense,
we recommend performing initial screens of all
hypotheses of interest using a moderate number of
pseudo-replicates (10,000–50,000) followed by ad-
ditional simulations for promising hypotheses to
refine variance estimates until confidence bounds
are narrowed sufficiently for purposes of inference.

DISCUSSION

When compared to the conventional gene-
dropping method for evaluation of genome-wide
linkage peak p-values, the replicate pool method
has several distinct advantages. First and foremost
is computational efficiency. As we have shown,
this method can be tremendously more efficient

than gene-dropping for data sets that include one
or more large families. When data include families
with 20 or more individuals, the replicate pool
method may require only a few hours to estimate
a p-value that may require weeks or years to
estimate using the traditional gene-dropping
method. In the past, a typical solution to this
problem has been to report an empirical p-value
based on a few dozen gene-dropping replicates.
While this is a reasonable approach given the
lack of alternatives, it leaves the investigator in the
ironic situation of being unable to assess signi-
ficance in exactly the most interesting data sets.
The replicate pool method represents a natural
solution to this problem; many linkage packages
calculate and report family-specific z-scores and
for relatively small computational effort, a p-value
that more accurately reflects the structure of the
data set can be reported. We recommend that
investigators generate a modest number of seed
replicates for each of the families in their genome
scan (say 50–100) and then use these to construct
a very large number of pseudo-simulated genome
scans (say 50,000–1,000,000) which can be ana-
lyzed in a computationally inexpensive manner.

Up to this point, the replicate pool has carried
a potential caveat—as we have mentioned, the
distribution of p̂RP is difficult to characterize
for any specific example. The simulation work
we have done here suggests that the distribution of
p̂RP is an extremely good approximation for p̂GD.
That said, one of the difficulties of this experiment
was the sheer scale of computation involved—for
instance, the results presented in Table I represent
roughly 300 days of computer time. This made
it challenging to obtain even relatively modest
samples from each distribution. Further simulation
work might be needed to determine if sampling
conditions exist for which the replicate pool
method does not perform as well as we have seen.

We have also demonstrated that for most data sets,
the replicate pool p-value estimator is more efficient
than the corresponding gene-dropping estimator
when a fixed computational effort is assumed. For
data sets where the replicate pool is most compu-
tationally efficient, we have shown that p̂RP can be
41,000-fold more efficient than the traditional
estimator for extremely significant results (po.002)
and 100–500 times more efficient for moderately
significant results (.01opo.05). Although an analy-
tical expression for calculating the variance of p̂RP

for an arbitrary linkage statistic is not available,
we have presented an estimator that can be used to
place a conservative bound on this value. Because

TABLE IV. Relative efficiency of pRP and pGD for family
samples with 16–128 families, 20 or 50 replicates in each
replicate pool

20 initial replicates 50 initial replicates

16 2.0 .65774 15.05 .65799 21.74
2.5 .22973 29.48 .23108 44.86
3.0 .04118 127.74 .04171 155.63
3.5 .00292 912.88 .00299 1074.14
4.0 .00008 N/A .00008 N/A

32 2.0 .53024 22.48 .52550 31.56
2.5 .24272 47.13 .23911 42.18
3.0 .09898 95.43 .09724 100.82
3.5 .03741 152.19 .03668 268.18
4.0 .01292 403.82 .01260 666.64

64 2.0 .46819 30.49 .46054 14.28
2.5 .18948 41.23 .18350 23.89
3.0 .06728 96.42 .06414 44.85
3.5 .02284 312.16 .02133 117.47
4.0 .00771 465.60 .00697 401.69

128 2.0 .45366 11.68 .45482 19.79
2.5 .17926 37.99 .17951 31.70
3.0 .06223 93.88 .06221 87.20
3.5 .02053 180.71 .02042 294.34
4.0 .00667 653.10 .00665 350.50
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this estimator tends to converge somewhat slowly,
we recommend that promising hypotheses first be
identified by a set of initial tests using a moderate

number of pseudo-replicates (�50,000) and followed
up with a second set of simulations if narrower
confidence intervals for p̂RP are desired.

Fig. 2. Convergence of STDRP for standard deviations in Table I, 10 cM microsatellite map, 2 children1parents genotyped.
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The efficiency of the replicate pool method also
makes it a good solution to the problem of properly
correcting for multiple comparisons when linkage
analyses are done on multiple correlated or nested
outcomes. A typical example of this situation
would be data presented in our applied example
[Abecasis et al., 2004a]. Here, the phenotype of
interest is notoriously difficult to define and the
investigators have (quite reasonably) chosen to
analyze several nested definitions of schizophrenia
in an effort to identify genetic components of the
syndrome. Once a set of interesting linkage peaks
has been identified, the problem then is to correct
for multiple comparisons while still accounting for
correlation among outcome variables. Traditional
gene-dropping would be a logical approach to
solving this problem, but can very quickly become
computationally prohibitive. Because the replicate
pool method is so much more computationally
efficient than gene-dropping, it can be used to test
any number of complex hypotheses in a reasonable
time frame and should be a useful tool for
approaching this problem.

Yet another consideration for the replicate pool
method that deserves further evaluation is the
performance of p̂RP in heterogeneous family
samples. Although p̂RP behaved well in both
the simulated heterogeneous family sample and
the schizophrenia data set we considered, it is
possible that sampling scenarios may exist where
the performance of p̂RP might degrade because a
small subsample of families is disproportionately
influential and not well represented in the initial
replicate pool. When this is anticipated, we
recommend that different numbers of seed repli-
cates be used for each family. For example, 20–50
replicates could be used for the smaller less
informative pedigrees, and additional replicates
could be generated for larger pedigrees that more
greatly influence the final linkage signal. Our
software implementation allows for different
numbers of seed replicates to be provided as
input for each family.

We have implemented the replicate pool method
along with our variance estimator in the Pseudo
package. This implementation is able to consi-
der one or more phenotypes simultaneously and
evaluate significance for a single peak or for
a group of linkage peaks. The package and C11

source code are freely available from our website at
http://www.sph.umich.edu/csg/abecasis/pseudo.
Pseudo is designed to work with the linkage
package Merlin, which can be used to generate
multiple null replicates of a data set and save the

associated family-specific z-scores for further
sampling by Pseudo.

ACKNOWLEDGMENTS

The authors thank Andrew Skol for many
helpful comments and suggestions.

ELECTRONIC INFORMATION

The replicate pool method for p-value estima-
tion is implemented in Pseudo, a freely available
C11 program which works with the linkage
package Merlin. Source code, executables and
a brief tutorial are available on our web site at
http://www.sph.umich.edu/csg/abecasis/pseudo/.
Supplemental information describing development
of our estimator for family variance weights is avail-
able at http://www.sph.umich.edu/csg/abecasis/
pseudo/supplement/
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