
Genetic Epidemiology 35 : 102–110 (2011)

A Comparison of Approaches to Account for Uncertainty
in Analysis of Imputed Genotypes
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The availability of extensively genotyped reference samples, such as ‘‘The HapMap’’ and 1,000 Genomes Project reference
panels, together with advances in statistical methodology, have allowed for the imputation of genotypes at single nucleotide
polymorphism (SNP) markers that are untyped in a cohort or case-control study. These imputation procedures facilitate the
interpretation and meta-analyses of genome-wide association studies. A natural question when implementing these
procedures concerns how best to take into account uncertainty in imputed genotypes. Here we compare the performance of
the following three strategies: least-squares regression on the ‘‘best-guess’’ imputed genotype; regression on the expected
genotype score or ‘‘dosage’’; and mixture regression models that more fully incorporate posterior probabilities of genotypes
at untyped SNPs. Using simulation, we considered a range of sample sizes, minor allele frequencies, and imputation
accuracies to compare the performance of the different methods under various genetic models. The mixture models
performed the best in the setting of a large genetic effect and low imputation accuracies. However, for most realistic
settings, we find that regressing the phenotype on the estimated allelic or genotypic dosage provides an attractive
compromise between accuracy and computational tractability. Genet. Epidemiol. 35:102–110, 2011. r 2011 Wiley-Liss, Inc.
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INTRODUCTION

The shared ancestry of chromosomes in a population
results in haplotype stretches shared by different indivi-
duals. Making use of these shared haplotype stretches, and
thereby accounting for the correlation of alleles at nearby
markers (linkage disequilibrium, LD), statistical algorithms
can make inferences about unobserved alleles. To estimate
a missing allele at a specific single nucleotide polymorph-
ism (SNP) on a haplotype, these algorithms compare
flanking markers with those from other haplotypes in the
sample to find appropriate ‘‘template’’ or reference
haplotypes to inform an estimate of the missing allele.

Recently there has been considerable interest in the
imputation of missing genotype data for the analysis of
genome-wide association (GWA) studies. The availability
of panels of extensively genotyped reference samples, such
as those from The International HapMap Project [HapMap;
International HapMap Consortium, 2007] and now the
1,000 Genomes Project, has allowed for the indirect
measurement of SNP genotypes that were not directly
typed in a genetic association study but typed in the
reference samples. This strategy has aided the discovery of
multiple loci associated with disease [e.g. Barrett et al.,

2008; Scott et al., 2007; The Wellcome Trust Case Control
Consortium, 2007] or quantitative traits [Lettre et al., 2008;
Loos et al., 2008; Willer et al., 2008]. For example, in Willer
et al. [2008], the LDLR (cholesterol receptor) signal was
detected only after imputation was performed, since the
associated variant (rs6511720) was poorly tagged in
samples genotypes with the Afymetrix 500K array set
(maximum R2

�0.21).
This imputation-based mapping protocol is a 2-step

process. First, unmeasured genotypes are imputed in the
GWA data. Then, imputed genotypes are tested for associa-
tion with phenotypes. Multiple methods exist for imputing
genotypes from population genetic data [Browning and
Browning, 2007; Greenspan and Geiger, 2004; Li et al., 2006;
Marchini et al., 2007; Scheet and Stephens, 2006; Stephens
and Scheet, 2005]; for a review see Browning [2008]. Here we
focus on the second step, testing the imputed genotypes for
association with a trait of interest.

Specifically, we aim to evaluate the relative performance of
several strategies for analyzing the distribution of imputed
genotypes in downstream analyses. One summary of these
probabilities comes from imputing a ‘‘best-guess’’ genotype
for each individual, which corresponds to the marginal mode
of the posterior distribution of the unmeasured genotype.
This approach ignores the uncertainty in the imputed
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genotype. When imputation is accurate, the correspondence
between the true and imputed genotype is strong and an
analysis of the imputed genotypes might result in little loss
in power compared with the true genotypes. However, if
imputation accuracy is low there may be a weak correlation
between the true genotypes and the guesses, which will
mask any real association between genotype and phenotype.

We also consider two approaches that attempt to account
for this uncertainty. The first of these uses the mean of the
distribution of imputed genotypes, which corresponds to an
expected allelic or genotypic count, or ‘‘dosage’’, for each
individual. This approach may do well, relative to using the
‘‘best guess’’ genotype, when there is some uncertainty about
the true genotype, since it retains more of the available
information, differentiating genotypes that were imputed
with high confidence from those with greater uncertainty.

A final approach uses mixture regression models to take full
advantage of the individual genotype posterior probabilities.
This approach should be superior when there is uncertainty in
the imputed genotypes, and information about the relation-
ship between genotype and phenotype is not well summar-
ized by a single average genotype. For example, this may
occur when the posterior probabilities are high for the two
homozygote genotypes, yet an average or allelic dosage would
indicate that unmeasured genotype was a heterozygote.

We find that for most realistic settings of GWA studies, such
as modest genetic effects, large sample sizes and high average
imputation accuracies, the strategy of regressing the pheno-
type on the genetic dosages provides adequate performance.
In fact, for these settings, small gains from using the full
mixture models are rendered negligible by the increased
model complexity and associated ‘‘cost’’ of estimating
additional parameters. However, when the effect size is large,
and imputation accuracy sufficiently poor, we demonstrate an
increase in power when utilizing all available information in
the posterior distribution in the form of mixture models.

METHODS

OVERVIEW

To simulate data from realistic cohort-based association
studies, we first generated dense genotype data from a
coalescent model. Then, conditional on these genotypes,
we simulated quantitative trait data for all individuals in
each cohort. In order to mimic the marker density from a
GWA study, we masked a fraction of the SNPs and then
imputed these genotypes, conditional on a set of simulated
reference haplotypes and the remaining observed SNPs.
Finally, we performed analyses to test for association
between imputed genotype and phenotype.

SIMULATIONS

Genotype data. For each of 100 one-megabase (1-Mb)
regions, we simulated 10,000 chromosomes from a coales-
cent model that mimics LD in real data, accounts for
variation in local recombination rates, and models popula-
tion history consistent with the HapMap CEU and YRI
analysis panels [Schaffner et al., 2005].

For each 1-Mb region, we then took a random subset of
120 simulated chromosomes to generate a region-specific
‘‘pseudo HapMap’’. We randomly paired (assuming
Hardy-Weinberg equilibrium) a random subset of 2,000

chromosomes of the remaining 9,880 chromosomes to
create 1,000 diploid pseudo individuals.

For the simulated HapMap data, polymorphic sites were
ascertained and thinned to match the corresponding (CEU)
Phase II HapMap International HapMap Consortium [2007]
marker density, allele frequency spectrum and LD patterns,
resulting in E1,000 SNPs for each region for the panel of 120
HapMap chromosomes. Based on the thinned HapMap
panel, we selected a set of 100 tagSNPs for each region that
included the 90 tagSNPs with the largest number of proxies
and 10 additional SNPs picked at random among those
remaining [Carlson et al., 2004]. The tagSNP selection
approach taken above resulted in tagSNP sets that captured
E78% of the common variants (MAF 45%) in the simulated
CEU HapMap, similar to the observed performance of the
Illumina HumanHap300 Beadchip SNP genotyping plat-
form. The genotypes at these 100 tagSNPs constituted the
observed data for each simulated sample.

QUANTITATIVE TRAIT

We generated phenotype values on each of the n
individuals for a large and small sample (n 5 1,000, 50),
conditional on their simulated genotypes. We simulated
trait values separately for four genetic models, with
varying degrees of dominance, and also for a null model
where genotypes and phenotypes were independent.

At each SNP, the genotype label (0, 1, 2) is represented by
the count of an arbitrarily chosen allele. Table I contains a
summary of notation for the frequencies and genetic effect
sizes (‘‘phenotypic deviations’’) of each genotype. Since allele
frequency affects the power to detect phenotype association,
we adjust the phenotypic deviations separately for each SNP,
so that we may tabulate results over all SNPs. To accomplish
this, we maintain constant genetic variance attributable to the
marker VG, which we calculate with the following formula
from Equation [8.8] (p. 129) of Falconer [1989]:

VG ¼ 2pq½a1dðq� pÞ�21½2pqd�2; ð1Þ

where p and q 5 1�p are allele frequencies, and a and d are
additive and dominance effects (see Table I). We report
genetic variance as a percent of total phenotypic variation
(heritability), fixing this at 2.8% for n 5 1,000, and 59.8% for
n 5 50. These values were calculated so as to achieve
approximately 90% power at type-I error of 5� 10�5 when
analyzing the simulated genotypes under an additive genetic
model with equal allele frequencies of one-half.

We performed the above trait simulations for 83,327
SNPs in turn for the following genetic models: additive
(d 5 0); partially dominant (d 5 (1/2)a); dominant (d 5 a);

TABLE I. Genotype and phenotype values

Genotype

A/A A/a a/a

Labels 0 1 2
Frequencies q2 2pq p2

Phenotypic deviation �a D a

Genotype labels are the counts of an arbitrarily chosen allele. The
phenotypic deviations are the deviations from the mean m� used
in the simulation, and vary by SNP. [This table is adapted from
Table 7.3 of Falconer, 1989, p 121.]
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and over-dominant (d 5 (6/5)a), corresponding to a value
for the heterozygote that is 10% greater than the difference
between the two homozygotes.

To simulate trait data y�i for individual i (1,y,n) at a
single SNP, we used the following model:

y�i ¼ m�1ð�aÞIfgi¼0g1ðdÞIfgi¼1g1ðaÞIfgi¼2g1ei; ð2Þ

where gi is the true genotype for individual i, a and d are
chosen according to (1), the indicator variable IfAg is one if
A is true and zero otherwise, and ei �Nð0; 1Þ:

REAL GENOTYPE DATA

We also obtained data from a GWA study of Type II diabetes
in individuals of European descent [FUSION; Scott et al., 2007].
In 538 control samples, additional genotyping was conducted
in a region of chromosome 14. This resulted in 521 markers for
which we had both imputed genotypes from the HapMap, as
well as genotypes typed on a custom microarray from
Illumina. Imputation in these data set was carried out with
MaCH 1.0 [Li et al., 2010], using the data from an Illumina
317 K microarray platform as ‘‘tag SNPs’’. Conditional on the
typed genotypes at these 521 markers, we simulated
quantitative trait data as above, keeping the genetic variance
fixed to yield informative and interpretable summaries of
power across multiple markers with varying allele frequencies.
In addition to simulating phenotypes on the full set (538
individuals), we also simulated a larger effect on a subset of 50
individuals, selected at random. We repeated these simulations
100 times to obtain simulated phenotypes for 52,100 SNPs
(100� 521), for both ‘‘large’’ and small sample sizes.

GENOTYPE IMPUTATION

To obtain posterior probabilities and imputed genotypes,
(Fig. 1) we used the software package fastPHASE [Scheet
and Stephens, 2006]. For each simulated region, we fit the LD
model to the reference chromosomes only, and then applied
this fitted model to the pseudo individuals in the simulated
cohort. (For convenience we set the number of haplotype
clusters K to be 20.) We assess imputation accuracy with the
square of the Pearson correlation coefficient between the true
and best-guess genotypes (R2), which is more informative
about power at different allele frequencies than a simple
genotype imputation error rate measure. For our simulations,
the median R2 for these data was 0.90 and the mean was 0.75.

REGRESSION ANALYSIS

We used regression analysis to test the effectiveness of
multiple summaries of the imputed genotypes. Let pki denote
the conditional (‘‘posterior’’) probabilities for the imputed
genotypes of individual i (1,y.,n), where k (0,1,2) indexes the
genotype by its label. We evaluated the performance of the
following three summaries of the genotype probabilities
conditional on the observed data:

1. Best guess—maximum a posteriori (‘‘MAP’’) genotype;
2. Dosage—estimated (expected) allelic or genotypic

counts; and
3. Posterior probabilities—probabilities of the three possi-

ble genotypes obtained from imputation.

For comparison, we also analyzed the true (simulated or
typed) genotypes.

First we give the models used for ordinary least squares
(OLS) regression. Then, we explain the use of mixture

models for regression. For each method, we consider both
additive (1-parameter of 1-degree-of-freedom ‘‘1 df’’) and
non-additive (2-parameter, 2 df) regression models for
analysis. In what follows, let yi denote the quantitative trait
value for individual i at a SNP.

ORDINARY REGRESSION ON GENOTYPES
AND ALLELIC DOSAGE

Additive. Let xi represent a particular feature of the
imputation procedure or the true genotype (gi) at a SNP
under consideration, i.e.

xi ¼

arg maxk2f0;1;2gfpkig best-guess genotype
p1i12p2i allelic dosage
gi true genotype:

8<
:

The additive model is written as

yi ¼ m1bxi1ei; ð3Þ

where e �Nð0;s2Þ, independently for all i. We use OLS
regression to test the null hypothesis H0 : b ¼ 0 vs. H1 : b 6¼ 0.
To evaluate significance, we compute an F-statistic.

Non-additive. Under a non-additive model, we

expand xi to be composed of two components ðxð1Þi ; x
ð2Þ
i Þ

as follows:

ðxð1Þi ; xð2Þi Þ ¼

ðIfxi¼1g; Ifxi¼2gÞ best-guess genotype
ðp1i; p2iÞ genotypic dosage
ðIfgi¼1g; Ifgi¼2gÞ true genotype:

8<
:

We write the dominance model as

yi ¼ m1b1xð1Þi 1b2xð2Þi 1ei; ð4Þ

where ei �Nð0;s2Þ, as above. Again we evaluate the null
hypothesis that there is no effect for any genotype, i.e.
H0 :¼ b1 ¼ 0; b2 ¼ 0 vs. H1 : b1 6¼ 0 or b2 6¼ 0. We apply
OLS regression and compute an F-statistic.

MIXTURE OF REGRESSION MODELS

To investigate the approach of multiple-imputation, we
fit a mixture of regression models to the phenotype data
and posterior genotype probabilities. The composite
regression model may be written as

yi ¼
X2

k¼0

pkifkðm; b; eiÞ; ð5Þ

where the regression function fkð�Þ is a function of the assumed
genetic model, i.e. additive or non-additive (see below).

For each assumed model below, we construct likelihood
ratio statistics to test for statistical significance. To estimate
the parameters (m, b), we maximize the log-likelihood
function using the Nelder-Mead Simplex Method [Nelder
and Mead, 1965], implemented in the R package optim.

Additive. Under an assumption of additivity of the
allelic effects, the regression function fkð�Þ is

fkðm; b; eiÞ ¼

m1ei; k ¼ 0
m1b1ei; k ¼ 1
m12b1ei; k ¼ 2;

8<
: ð6Þ

where ei �Nð0;s2Þ. To test the hypothesis H0 : b ¼ 0 vs.
H1 : b 6¼ 0, we construct a likelihood ratio test.
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Non-additive. Relaxing the assumption of additivity
(allowing for dominance) of the allelic effects, we expand
b to be (b1, b2), and the regression function fkð�Þ is

fkðm;b1; b2; eiÞ ¼

m1ei; k ¼ 0
m1b11ei; k ¼ 1
m1b21ei; k ¼ 2;

8<
: ð7Þ

where ei �Nð0;s2Þ. To test the hypothesis H0 : b1 ¼ 0
b2 ¼ 0 vs. H1 : b1 6¼ 0, or b2 6¼ 0, we construct a likelihood
ratio test.

RESULTS

Here we present results on simulated phenotypes from both
simulated and real genotype data, as well as imputed
genotypes from standard software packages. For various
settings (sample sizes, effect sizes, real and simulated
genotypes, genetic models), we tabulate power results overall,
as well as plot them by imputation accuracy and allele
frequency (calculated from the full cohort of 1,000 individuals).

LARGE SAMPLE SIZE WITH SMALL EFFECTS

We computed power empirically, based on the analysis of
E1 million null data sets (where there was no association
between phenotype and genotype) from which we obtained
empirical significance thresholds. Results from analyses of
our various imputation strategies and regression models,
for the large sample of 1,000 individuals in the simulated
studies, are reported in Table II.

In general, there was a consistent gain in performance
achieved from using the dosage summaries or mixture
models in comparison to using the best guess genotypes.
This improvement was larger for the two-parameter
regression models, regardless of the underlying genetic
model, with absolute gains in power of E14%. For
additive or one-parameter models, the average gain was
more modest (3–4%). All differences between the dosage
and mixture model strategies were small (o2%).

We also examined the effect of imputation accuracy and
allele frequencies on the power to detect association in
Figure 2. We summarized accuracy at each SNP with the
square of the Pearson correlation coefficient between the

imputed and true genotypes (coded as 0, 1, or 2), which we
refer to as R2.

When the accuracy is high (R240.9), using the best-
guess genotype from the imputation procedure results in
little loss of power. The gain from using a dosage or
mixture model is greatest at intermediate accuracies, since
posterior probabilities are informative about the under-
lying genetic variation, even if they do not allow accurate
‘‘best-guess imputation’’ of genotypes. For all three
strategies, at low imputation accuracies, the lines of the
additive regression models converge, so do the lines of the
dominant regression models.

TABLE II. Power results for large sample size and small effects

Simulated trait

Analysis strategy
Imputation summary/regression model

Additive
(d 5 0)

Partially dominant
(d 5 (1/2)a)

Dominant
(d 5 a)

Over-dominant
(d 5 (6/5)a)

Best-guess/1 df 0.635 0.599 0.478 0.435
Best-guess/2 df 0.466 0.463 0.448 0.449
Dosage/1 df 0.660 0.620 0.489 0.447
Dosage/2 df 0.603 0.598 0.588 0.588

Mixture/1 df 0.668 0.628 0.499 0.456
Mixture/2 df 0.604 0.600 0.587 0.588

True/1 df 0.897 0.865 0.730 0.683
True/2 df 0.708 0.711 0.706 0.709

The ‘‘Analysis Strategy’’ specifies the combination of imputation summary (e.g. best guess, dosage, or mixture model) and whether the
regression model assumes a strict additive model (Equation (3); ‘‘1 df’’) or allows for dominance (Equation (4); ‘‘2 df’’). Results are based on
a cohort of 1,000 individuals. Power was computed at a fixed type-I error rate (a) of 5� 10�5, based on empirical quantiles from analysis of
916,597 ‘‘null’’ data sets, with a trait simulated independent of genotype. Quantitative traits were simulated to have constant genetic
variance of 2.8% heritability.

Fig. 1. Example of posterior probability summaries. Here we
present a didactic illustration of the three summaries of the full

posterior probabilities for imputed genotypes. From the set of

Reference Haplotypes, the missing genotype (denoted with two

? symbols) in the sample genotypes can be inferred. Based on
the reference, the first sample haplotype would consist of a C at

the missing position, since all three similar haplotypes in the

reference set have a C here. For the second sample haplotype,

three-fourths of the similar haplotypes in the reference set
consist of a C; and one consists of a T at that position. Therefore,

the ‘‘expected’’ dosage would be 1.75. And the only ‘‘possible’’

genotypes, based completely on the reference, would be C/C
and C/T, expected probabilities given.
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An important factor in overall power summaries, such
as those in Tables II and III (below), is the allele frequency
distribution of SNPs present in the reference panel, at
which genotypes are being imputed in the study samples,
since the tables are constructed with averages over all
SNPs. In Figures 2C and 3C, where phenotypes were
simulated from an additive genetic model, powers for all
regression models increase substantially when minor allele
frequencies are relatively low. This may reflect the relative
difficulty of accurate imputation at SNPs with a lower
MAF. (Under the correct additive model, power for the
true genotypes is unaffected, since we attempted to make
power independent of allele frequency for the purposes of
aggregating results across SNPs for general comparisons
among analysis strategies; see Methods.) For data simulated

under a dominant genetic model, methods that assume the
correct dominant model for analysis are superior at a
greater range of allele frequencies.

SMALL SAMPLE SIZE WITH LARGE EFFECTS

For SNPs with modest genetic effects, as above, there is
little gain from the increased computational demands of
applying mixture models for the analyses. To examine a
scenario where the mixture models might offer an
advantage, we repeated the above simulations with larger
genetic effects (and thus smaller sample sizes so that
power was below 100%). This situation might be found in
expression quantitative trait loci (eQTL) mapping studies,
for example. These results are in Table III.

A B

C D

Fig. 2. Power vs. accuracy and allele frequency for large sample size and small effects. For each summary and the true genotypes, both

an additive (solid line) and dominant (dotted line) model were analyzed. (A) and (C) are based on data simulated with an additive

effect; (B) and (D) are based on data simulated under a model of complete dominance. Power was computed at a fixed type-I error rate
(a) of 5� 10�5. The sample size was 1,000. TOP: Power is plotted against R2, a measure of imputation accuracy. BOTTOM: Power is

plotted against allele frequency. (A) Power vs. R2 with an additive effect; (B) power vs. R2 under complete dominance; (C) power vs.

frequency of minor allele with an additive effect; and (D) power vs. frequency of dominant allele under complete dominance.
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Here, the advantage of applying mixture models is
apparent, with average power gains of 10–12%. The
contrast is greater at lower imputation accuracies (top
row of Fig. 3) and is maintained even when we applied the
incorrect additive regression model to data simulated with
a strong dominant effect (Fig. 3B) (i.e. the green solid line
is well above the blue dotted line at modest accuracies).

It is worth noting that although we attempted to
simulate phenotypes so that results may be tabulated
across allele frequencies, by keeping heritability constant
per Equation (1), this does not guarantee that power will
be independent of allele frequency. Heritability represents,
in some sense, the amount of information about the
phenotype and genotype relationship. How that relates to
power is not completely predictable and will depend on
additional factors, such as analysis methods, genetic
model (e.g. dominance here), and particularly imputation
accuracy. However, even for the true genotypes, it is
difficult to calibrate power at low allele frequencies in
samples of finite size. For example, in Figures 2D and 3D,
power is reduced at low frequencies of the dominant
allele. This is due to the requirement of having a
homozygote—a rare genotype at low allele frequency
and thus less likely to be observed near its expected
proportion—for a shift in phenotypic mean; e.g., this
phenomenon is more pronounced in Figure 3D where the
sample size is 50. In fact, it is for this reason that we
included results for true genotypes (where the ‘‘correction’’
for allele frequency, etc., was not perfect).

COMPUTATION

The mixture-model-based procedures were considerably
more computationally demanding, based on our imple-
mentations in the R software package. Per-marker run
times for the mixture-models averaged approximately
4 sec for 1-df (about 300 times longer than for the best-
guess and dosage methods) and 20 sec for 2-df regression
models. However, calculations for methods applied in this
study can be conducted in parallel. We estimate that an
application of mixture models to poorly imputed SNPs in
a GWA study could be completed in a couple of days
using tens of CPUs.

REAL DATA WITH LARGE AND SMALL
EFFECTS

We confirmed the general applicability of our results to real
genotype data, by applying our methods to 538 control
samples from a GWA case-control study of Type II diabetes
(FUSION). We studied the following two scenarios: (1) all 538
samples and a modest effect (single-marker heritability of
4.3%); and (2) small sample size of 50 individuals and a large
effect (single-marker heritability of 59.8%). To examine the
phenomenon of seeing greatly increased power for the
mixture models at sites with poor imputation accuracy, we
report results for small sample size by low imputation
accuracy (R2o0.56) and ‘‘high’’ accuracy (R2

Z0.56). (Due to
the constraints of the real data, there does not exist a full
spectrum of allele frequencies for plots by allele frequency.
The cutoff of 0.56 was chosen based on a visual examination
of Fig. 3.) In all scenarios, the power from using mixture
models equals or exceeds those for the dosage and best-guess
summaries, although only the scenario of low imputation
accuracy and large effects show a pronounced difference.
Results are displayed in Table IV.

DISCUSSION

Several software packages have been developed to impute
and test SNPs that were not typed directly, such as BIMBAM
[Servin and Stephens, 2007], IMPUTE [Marchini et al., 2007],
MaCH [Li et al., 2009, 2010], and Beagle [Browning and
Browning, 2009]. Two of these methods (BIMBAM and
IMPUTE) assess association between genotype and phenotype
with a Bayes Factor. We do not consider the Bayesian approach
here, but this is discussed by Guan and Stephens [2008].

Multiple factors will impact power of imputation-based
strategies for the analysis of GWA studies, including
differences in the patterns of LD and allele frequencies
between the study and reference populations. However,
for the single-marker analyses examined in our study, the
impact of these factors can be measured via their effect on
imputation accuracy, since the missing (unmeasured)
genotypes are the quantities of interest for analysis.
Different imputation algorithms will lead to slightly
differential accuracies. However, our aim here was not to

TABLE III. Power results for large effects and small sample size

Simulated trait

Analysis strategy
Imputation summary/regression model

Additive
(d 5 0)

Partially dominant
(d 5 (1/2)a)

Dominant
(d 5 a)

Over-dominant
(d 5 (6/5)a)

Best-guess/1 df 0.701 0.688 0.582 0.546
Best-guess/2 df 0.682 0.670 0.629 0.636
Dosage/1 df 0.755 0.743 0.629 0.590
Dosage/2 df 0.745 0.736 0.702 0.707
Mixture/1 df 0.850 0.837 0.721 0.686
Mixture/2 df 0.829 0.828 0.805 0.810

Truth/1 df 0.916 0.911 0.802 0.767
Truth/2 df 0.913 0.910 0.873 0.890

The ‘‘Analysis Strategy’’ specifies the combination of imputation quantity/summary (e.g. best guess, dosage, or mixture model) and
whether the regression model allows for deviations from a strict additive model. Results are based on a cohort of 50 individuals. Power was
computed at a fixed type-I error rate (a) of 5� 10�5, based on based on empirical quantiles from analysis of 916,597 ‘‘null’’ data sets, with a
trait simulated independent of genotype. Quantitative traits were simulated to have constant genetic variance (of 59.8% heritability), given
the genetic model and allele frequencies at each SNP.
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compare these accuracies but to condition on the sorts of
accuracies that might be expected from typical marker
densities and patterns of LD.

The SNP density targeted in our simulations was
motivated by analyses of existing GWA studies. Increased
densities should result in more information about LD to
increase imputation accuracies. For this reason, we plotted
results by imputation accuracies in addition to the tables
which integrate over the distributions of LD patterns and
allele frequencies. For the same reason, our results should
be applicable to imputation from low-coverage sequencing
data. Although the distributions of allele frequencies of
interrogated SNPs will shift to lower values, and imputa-
tion accuracies may vary in a manner different from those
encountered in this study, our results plotted by these
features (frequency and accuracy) should apply to other

raw data sources. (Our tabulated summaries may in fact
change under these different conditions, since the results
are integrated over particular distributions of allele
frequencies and accuracies, dependent on the simulations
and imputation methods employed herein.)

We applied methods to a sample size of 1,000 individuals.
While this size is somewhat smaller than for some GWA
studies, and much smaller than associated meta-analyses, it
is sufficiently large to illustrate comparisons of methods for
effect sizes that correspond to intermediate power to detect
association. Larger sizes, with similarly sized effects, will
simply result in increased power regardless of methods.
Smaller sample sizes will require stronger genetic effects for
there to exist sufficient power to detect association.
Examples of such scenarios may come from studies of
pharmacogenetics or mapping eQTLs.

A B

C D

Fig. 3. Power vs. accuracy and allele frequency for small sample size and large effects. Power was computed at a fixed type-I error rate
(a) of 5� 10�5. The sample size was 50. For each summary and the true genotypes, both an additive (solid line) and dominant (dotted

line) model were analyzed. (A) and (C) are based on data simulated with an additive effect; (B) and (D) are based on data simulated

under a model of complete dominance. TOP: Power is plotted against R2, a measure of imputation accuracy. BOTTOM: Power is plotted

against allele frequency: (A) power vs. R2 with an additive effect; (B) power vs. R2 under complete dominance; (C) power vs. frequency
of minor allele with an additive effect; and (D) power vs. frequency of dominant allele under complete dominance.
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Here, we have made no attempt to model the correlation
of genotypes among SNPs during analysis. To detect
interactions among genotypes at nearby SNPs, it may be
beneficial to model this dependence during imputation
and analysis. The imputation procedures mentioned above
may obtain correlated genotypes by sampling entire
chromosomes of untyped SNPs, instead of the data at
each SNP, marginally.

It may be possible to do better in such a setting by using
genuine ‘‘multiple imputation’’ methods. However, in our
setting, by applying a mixture of regression models, we
hope to capture a range of possible phenotype-genotype
relationships, and the gain from multiple imputation over
the mixture model should not be large. Therefore, we felt
that the mixture model provided a close approximation to
an optimal analysis procedure.

In our most relevant comparisons with modest effects
and large sample sizes, use of the dosage summaries was
as powerful as using the mixture model methods, at a
fraction of the computational cost. The exception to this
result is apparent only at SNPs with very large genetic
effects. In such situations of large effects, most methods
will be effective at detecting an association. This difference
is most pronounced at poorly imputed SNPs. In practice,
many researchers routinely exclude results from poorly
imputed SNPs, such as those below an R2 threshold of, say,
30%. Application of this quality-control filter to our results
would tend to mitigate (tabulated) differences in power
between the mixture and standard regression methods in
the setting of large effect sizes. In fact, it may be fruitful, in
some cases, to devote additional computational resources
to some of these SNPs, such as application of mixture
models. However, for the majority of settings and effect
sizes detected and verified in GWA studies, use of dosage
quantities appears to be effective and efficient to account
for the uncertainty in the imputed genotypes.
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APPENDIX A: EFFECT SIZES FOR
SIMULATIONS

Phenotypes were simulated as described in Methods,
using Equations (1) and (2). Here, we focus on the values
used for the more realistic scenario of a larger samples size
(1,000), i.e. a constant genetic variance with heritability of
2.8%, chosen for adequate power to facilitate comparisons
among methods. In Figure A1 we show the actual effect
sizes—the values for a and d used in Equation (2)—as they
vary with allele frequency. Note the frequency of the
recessive allele is plotted on the horizontal axis, and thus
for the purely additive model (no dominance) the effect
size is symmetric about an allele frequency of 0.5.

Fig. A1. Summary of effect sizes for phenotype simulations.
Values for the effect size (a) are plotted against allele

frequencies of the recessive allele (allele ‘‘A’’ in Table I). Values

of d are given as in Tables II and III, i.e. 0 (Additive), (1/2)a
(Partially dominant), a (Dominant), and (6/5)a (Overdominant).
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