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ABSTRACT

Mapping and identifying variants that influence quantitative traits is an important problem for genetic
studies. Traditional QTL mapping relies on a variance-components (VC) approach with the key assumption
that the trait values in a family follow a multivariate normal distribution. Violation of this assumption can
lead to inflated type I error, reduced power, and biased parameter estimates. To accommodate nonnormally
distributed data, we developed and implemented a modified VC method, which we call the ‘‘copula VC
method,’’ that directly models the nonnormal distribution using Gaussian copulas. The copula VC method
allows the analysis of continuous, discrete, and censored trait data, and the standard VC method is a special
case when the data are distributed as multivariate normal. Through the use of link functions, the copula VC
method can easily incorporate covariates. We use computer simulations to show that the proposed method
yields unbiased parameter estimates, correct type I error rates, and improved power for testing linkage with
a variety of nonnormal traits as compared with the standard VC and the regression-based methods.

VARIANCE-COMPONENTS (VC) linkage analysis
(Amos 1994; Almasy and Blangero 1998) plays

an important role in mapping quantitative trait loci
(QTL) that influence quantitative traits in humans. Un-
like the original Haseman–Elston regression (Haseman

and Elston 1972), which lacks flexibility in modeling
variance–covariance structures and covariates, the VC
method can analyze pedigrees essentially of any con-
figuration and provides increased linkage power (Amos
et al. 1996; Williams and Blangero 1999). In the
simplest implementation of the VC method, trait val-
ues are assumed to follow a multivariate normal distri-
bution with the variances and covariances depending
on identical-by-descent (IBD) sharing between relative
pairs and major gene, shared polygenes, and environ-
mental variance components.

A key assumption in the VC method is that the quan-
titative traits follow a multivariate normal distribution
within a family. Violation of this assumption can lead to
inflated type I error, reduced linkage power, and biased
parameter estimates (Allison et al. 1999; Epstein et al.
2003). Several solutions have been proposed when the
trait distribution is not normal. Most simply, one can
transform the data to univariate normal and apply the
standard VC method. For example, for continuous
traits, this can be achieved by the inverse-normal trans-
formation using the empirical distribution of the trait.

This transformation is quite accurate when the sample
size is large and ensures that the trait is approxi-
mately distributed as univariate normal. Alternatively,
a semiparametric model that jointly estimates an em-
pirical transformation and genetic model parameters
can be used (Diao and Lin 2005). A weakness of these
transformation-based approaches is that they are not
appropriate for the analysis of discrete or censored
traits.

To analyze the data without transformation, one could
use an approach based on generalized estimating equa-
tions (GEEs) (Liang and Zeger 1986). Chen et al.
(2004) described a GEE framework for linkage analy-
sis that includes the Haseman–Elston regression and
the standard VC methods as special cases, where the
different methods result from different choices of a
working covariance matrix. This approach allows for
various robust score tests to be defined and can be ex-
tended to take higher moments of the trait distribution
into account (Chen et al. 2005). If sufficient computing
resources are available, another option is to use the
standard VC method and assess significance through
gene-dropping simulations. For settings where comput-
ing resources are limited, Blangero et al. (2000) pro-
posed a robust estimator of the covariance matrix that
controls type I error but may lead to loss of efficiency.

As far as efficiency is concerned, the maximum-
likelihood procedure with the proper distribution is
the method of choice. For example, Lange et al. (1989),
Wan et al. (1998), and Epstein et al. (2003) developed
VC models for data from t-, log-normal, and cen-
sored normal distributions, respectively. In each case,
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parameters are estimated by maximum likelihood and
the methods outperform alternatives for the analysis
of data with t-, log-normal, and censored distributions,
respectively. Given that quantitative traits of interest in
genetic studies follow many different distributions, it is
desirable to develop a unified likelihood framework that
allows the analysis of a broad range of distributions.

In the statistical literature, the most general way to
describe dependence between correlated random vari-
ables is to use copulas (Sklar 1959). Copulas are multi-
variate distribution functions whose one-dimensional
margins are uniform on the [0, 1] interval (Nelson

1999). Copulas are useful for constructing joint distri-
butions, especially when working with nonnormal ran-
dom variables (Joe1997). Here, we use Gaussian copulas,
which share many similarities with the multivariate
normal distribution. We show three examples in Figure
1, where the bivariate normal, the bivariate censored
normal, and the bivariate gamma distributions are mod-
eled by Gaussian copulas. In principle, copulas can be
used to model the joint distributions of any continuous
or discrete traits and even mixed continuous and
discrete traits.

Copulas have been employed in previous genetic
mapping studies. Tregouet et al. (1999) developed a
parametric copula model for the analysis of familial
binary data and conducted a combined segregation–
linkage analysis of levels of plasma angiotensin. Wang

and Huang (2002) proposed a score test for QTL
mapping with sibships of arbitrary size using trans-
formed data based on Gaussian copulas. Basrak et al.
(2004) described a bivariate Gaussian copula approach
to relax the normality assumption in QTL mapping.
Both Wang and Huang (2002) and Basrak et al. (2004)
implemented their copulas using a two-stage approach
in which the inverse-normal transformation was first
used to standardize the data, and the transformed traits
were later tested for linkage assuming multivariate
normality. However, the main strength of the copula is
not transformation but its ability to describe the joint
distribution of multivariate random variables and to
characterize their dependence structure. Compared to
the two-stage approach, we expect that methods based

on the joint distributions of the original traits will be
more efficient.

In this article, we describe a unified method for map-
ping genes that influence quantitative traits by use
of the Gaussian copulas in the VC framework. We call
this the ‘‘copula VC method.’’ Our method allows the
analysis of continuous, discrete, and censored traits, and
the standard VC method is a special case of our method
when the data are distributed as multivariate normal.
The copula VC method shares several features of the
standard VC method; it is (i) likelihood based, (ii)
applicable to pedigrees of any configuration, and (iii)
readily incorporates covariates through the use of link
functions. We evaluated the performance of the copula
VC method by simulating data from multivariate Pois-
son and censored normal distributions. We compared
our method with the standard VC method and a
regression-based method (Sham et al. 2002), which is
equivalent to a robust score test derived under the GEE
framework (Chen et al. 2004). Our simulation results
indicate that the copula VC method yields unbiased
parameter estimates, correct type I error, and modest
improvement of power for testing linkage.

MATERIALS AND METHODS

We consider the problem of identifying genetic variants
that influence quantitative traits, which may be continuous,
discrete, or censored, and have distributions that may not be
normal. Here, we develop a unified likelihood framework for
the analysis of quantitative traits with a broad range of
distributions. We seek to (i) identify major genetic loci that
influence the quantitative traits and (ii) estimate the major
gene heritability, overall genetic heritability, and regression
coefficients of measured environmental factors. In the follow-
ing sections, we review likelihood calculation in the standard
VC method, briefly describe Gaussian copulas, and provide
details of our approach.
Likelihood of the standard VC method: A critical assump-

tion in the standard VC method is that the trait values within
a family are distributed as multivariate normal. For a family
with m related individuals, denote their trait values by y ¼
ðy1; . . . ; ymÞ. Let xj denote a vector of observed covariates for
individual j, and let the mean of the trait value be EðyjÞ ¼
mj ¼ xT

j b. In the standard VC method, the trait value is

Figure 1.—Contour plot of den-
sities for (A) bivariate normal, (B) bi-
variate censored-normal, and (C)
bivariate gamma distributions (plotted
in the log10 scale).
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modeled as the sum of independent effects due to measured
covariates, such as age and gender, and unmeasured factors
that can be modeled as random effects, such as the effect of the
major-gene (mg), polygenes (pg), and individual-specific
environmental (e) factors. The covariance matrix

P
¼ ðSjkÞ

for the m individuals has elements

Sjk ¼
s2

mg 1s2
pg 1s2

e; if j ¼ k

pjks
2
mg 1 2fjks

2
pg; if j 6¼ k;

(

where pjk denotes the proportion of alleles at the major gene
shared IBD between individuals j and k, fjk is the kinship
coefficient, s2

mg is the additive genetic variance of the major
gene,s2

pg is the additive genetic variance due to polygenes, and
s2

e is the residual environmental variance. The IBD sharing
probabilities are typically unobservable, but can be estimated
from genetic marker data by use of the Lander–Green al-
gorithm (Lander and Green 1987), as implemented in
software packages such as GENEHUNTER (Kruglyak et al.
1996), ALLEGRO (Gudbjartsson et al. 2000), and MERLIN
(Abecasis et al. 2002). Under the multivariate normality as-
sumption, the likelihood of the family is

L ¼ ð2pÞ�m=2 j
X

j�1=2 expf� 1
2ðy � mÞTS�1ðy � mÞg: ð1Þ

Gaussian copulas: The standard VC method uses the
Pearson correlation, a measure of linear dependence, to
model phenotypic similarity between a pair of individuals.
However, when the traits are nonnormally distributed, linear
dependence may not be suitable due to the presence of
higher-order correlation, especially when the traits are highly
skewed or discrete. A more flexible way to describe depen-
dence is to use copulas. Consider m possibly dependent uni-
form random variables U1; . . . ;Um on the [0, 1] interval. The
dependence relationship can be modeled through copula
Cðu1; . . . ; umÞ ¼ PðU1 #u1; . . . ;Um #umÞ, whereC is the joint
distribution function of Uj ; j ¼ 1; . . . ;m.

A copula of particular interest is the Gaussian copula,
defined as Cðu1; . . . ; umÞ ¼ FmðF�1ðu1Þ; . . . ;F�1ðumÞ jGÞ,
where F and Fm are the standard univariate and multivariate
normal cumulative distribution functions (CDFs), and G is an
m3m correlation matrix. By using the Gaussian copulas,
handling of a multivariate distribution can be separated into a
marginal model for the inverse normal scoreF�1ðGjðyjÞÞ and a
model for the joint distribution of the inverse normal scores
with FmðF�1ðG1ðy1ÞÞ; . . . ;F�1ðGmðymÞÞÞ, where GjðyjÞ is the
CDF of yj . If the trait is continuous, then the CDF is uniformly
distributed, and the corresponding inverse-normal score is
distributed as standard univariate normal. In genetic linkage
studies of univariate traits, we are typically interested in trait
values that follow the same marginal distribution. For now, we
assume that all marginal distributions are the same and denote
Gj ¼ G .

Gaussian copula VC models: We assume that the marginal
distribution of each trait value comes from an exponential
family with distribution function g ðy;h;uÞ ¼ expfðyh�
bðhÞÞ=aðuÞ1 cðy;uÞg (McCullagh and Nelder 1989), where
a, b, and c are known functions, u is the dispersion parameter,
and h is the canonical parameter. The mean and variance
of the trait value are given by EðyÞ ¼ m ¼ b9ðhÞ and varðyÞ ¼
b$ðhÞaðuÞ, respectively. Given a set of covariates x, the mean is
related to x through a known link function hðmÞ ¼ xTb. The
specification of hð�Þ depends on the trait distribution. For ex-
ample, for a normally distributed trait, hðmÞ ¼ m; for a count-
related trait, hðmÞ ¼ logðmÞ; for a binary trait, hðmÞ ¼ log½m=

ð1 � mÞ�; for a gamma-distributed trait, one can use either a
reciprocal link function hðmÞ ¼ 1=m or a log link function
hðmÞ ¼ logðmÞ. For a gamma-distributed trait, the reciprocal
link is the canonical link, but it prohibits negative mean values
and can lead to unstable estimation of parameters (McCullagh
and Nelder 1989), so that the log link is typically preferred.

Given the marginal trait distributions, the Gaussian copula
gives rise to the following joint distribution of y ¼ ðy1; . . . ; ymÞ,

F ðy;h;u;GÞ
¼ FmðF�1ðGðy1;h1;uÞÞ; . . . ;F�1ðGðym ;hm ;uÞÞ jGÞ; ð2Þ

where the correlation matrix G has elements 1 on the diago-
nal and ðpjks

2
mg 1 2fjks

2
pgÞ=ðs2

mg 1s2
pg 1s2

eÞ, j 6¼ k, on the off-
diagonal. The correlation matrix G characterizes the pairwise
nonlinear dependence of the trait values, corrðF�1ðGðyj ;
hj ;uÞÞ;F�1ðGðyk ;hk ;uÞÞÞ, among the components of y.
Joint probability/density functions: Given the joint distri-

bution function of y, the corresponding joint probability/
density function can be obtained by taking derivatives with
respect to (2) (Song 2000). When the trait is continuous, the
joint density function of y is

f ðy;h;u;GÞ

¼ cðGðy1;h1;uÞ; . . . ;Gðym ;hm ;uÞ jGÞ
Ym
j¼1

g ðyj ;hj ;uÞ; ð3Þ

where cðu1; . . . ; um jGÞ ¼ jGj�1=2expf1
2q

TðIm � G�1Þqg and uj ¼
Gðyj ;hj ;uÞ, q ¼ ðq1; . . . ; qmÞT is a vector of inverse-normal
scores qj ¼ F�1ðujÞ, and Im is an m-dimensional identity
matrix.

When the trait is discrete, the joint probability function of
y is obtained by taking the Radon–Nikodym derivative for
F ðy;h;u;GÞ in (2) with respect to counting measure (Song
2000),

f ðy;h;u;GÞ

¼
X2

j1¼1

. . .
X2

jm¼1

ð�1Þj11���1jmFmðF�1ðu1;j1 Þ; . . . ;F�1ðum;jm Þ jGÞ; ð4Þ

where uj ;1 ¼ Gðyj�;hj ;uÞ and uj ;2 ¼ Gðyj ;hj ;uÞ. Here, Gðyj�;
hj ;uÞ is the left-hand limit of G at yj, which is equal to Gðyj � 1;
hj ;uÞ when yj takes integer values as for the Poisson and
Binomial distributions.

Finally, when the m margins include m1 continuous and
m2 ¼ m � m1 discrete outcomes, the joint density function can
be obtained as follows. Let u1 ¼ ðu1; . . . ;um1

ÞT and u2 ¼
ðum111; . . . ;umÞT. The same partition and notation are applied
for vectors q and y. Let

C*ðu1;u2 jGÞ ¼ ð2pÞ�ðm2=2ÞjGj �ð1=2Þ
ðF�1ðum111Þ

�‘

. . .

ðF�1ðum Þ

�‘

3 exp �1
2ðq

T
1 ; y

T
2 ÞG�1ðqT

1 ; y
T
2 Þ1 1

2q
T
1q1

n o
dy2;

and then the joint density of y is given by

f ðy;h;u;GÞ ¼
Ym1

j¼1

g ðyj ;hj ;u1Þ3
X2

jm111¼1

. . .
X2

jm¼1

ð�1Þjm1111���1jm

3C*ðGðy1;h1;u1Þ; . . . ;Gðym1 ;hm1
;u1Þ;

um111;jm111 ; . . . ; um;jm jGÞ; ð5Þ

where u1 is the dispersion parameter for the first m1 con-
tinuous outcomes and ut;jt ’s are defined as above.
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It is worth noting that when the marginal distribution G
is continuous, the transformed trait vector ðF�1ðGðy1;h1;
uÞÞ; . . . ;F�1ðGðym ;hm ;uÞÞÞ

T is distributed as multivariate nor-
mal with mean vector 0 and correlation matrixG. However, this
is not true for discrete traits. By taking Radon–Nikodym deriva-
tives with respect to counting measure, Equation 4 allows us
to calculate explicitly the joint probability mass function of
the correlated discrete traits. This makes our method differ-
ent from those of Wang and Huang (2002) and Basrak et al.
(2004) who assumed that the inverse-normal transformed
traits are distributed as multivariate normal regardless of the
trait types. Without deriving the joint probability mass func-
tion for the original traits, their methods should be used for
the analysis of continuous traits only.

Given the joint density/probability function for one family
in Equations 3, 4, or 5, the construction of the full likelihood
for the trait data is simply the product of the joint density/
probability functions over all families:

L ¼
Y

f ðy;h;u;GÞ: ð6Þ

The joint probability/density functions allow us to analyze
traits with a variety of distributions. For example, for traits that
have skewed distributions, one might assume that the trait
values within a family follow a multivariate gamma distribution
and model their joint density by Equation 3; for count data,
one might assume that the trait values within a family follow a
multivariate Poisson or negative binomial distribution and
model their joint probability by Equation 4.

It is interesting to note that our likelihood calculation also
allows the analysis of censored data that may arise in genetic
studies, for example, due to assay limitations or when some
subjects are taking medication (Epstein et al. 2003). Here, we
assume that the latent distribution of the censored data is
continuous. To illustrate how one could obtain joint densities
of censored data, consider a sib pair with trait values ðy1; y2Þ
that have a bivariate censored normal distribution. For con-
venience, assume that censoring results in all trait values less
than a threshold value y* are equal to y*. A censored trait value
can be regarded as being generated from a Bernoulli distri-
bution with the probability parameter being the proportion of
censoring. If both sibs are censored, their joint probability
function is given by the discrete-type Equation 4; if neither
observation is censored, their joint density function is given by
the continuous-type Equation 3; and if one sib is censored and
the other sib is not, their joint density function is given by the
mixed-type Equation 5. The joint density for bivariate cen-
sored normal data is given in appendix a. Similar derivations
apply to censored data in higher dimensions and with other
latent distributions.
Test of linkage: Testing linkage is the central task in QTL

mapping studies. Invoking the above copula joint models, we
can establish a test for linkage at the major gene H0: s

2
mg ¼ 0

vs. HA: s
2
mg . 0 within the framework of likelihood-ratio tests,

where the likelihood-ratio statistic is 2 lnðL̂A=L̂0Þ, with L̂A and
L̂0 being the likelihood (6) maximized under the alternative
and null hypotheses, respectively. Since the value of s2

mg is on
the boundary of the parameter space under the null hypoth-
esis, the asymptotic null distribution of the likelihood-ratio
statistic will be approximated by a 50:50 mixture of x2

1 and a
point mass at 0 (Self and Liang 1987). The LOD score at the
locus being tested is log10ðL̂A=L̂0Þ, which is equivalent to
2 ln 10 � 4:6 units of the likelihood-ratio statistic. We maxi-
mized these likelihoods via a Gauss–Newton type algorithm
(Ruppert 2005) (appendix b), which requires the first deriva-
tives of the log-likelihood.
Simulations: We conducted several simulations to examine

and compare the performance of the copula VC, the standard

VC, and the regression-based method as implemented in
MERLIN-REGRESS for the analysis of nonnormal data. We
specified the true population mean, variance, and heritability
of the traits in MERLIN-REGRESS, therefore allowing this
method to achieve optimal performance. The method imple-
mented in MERLIN-REGRESS has been shown to be equiva-
lent to a robust score test using the GEE framework (Chen
et al. 2005). For illustration purposes, we examined Poisson-
and censored normal-distributed traits. We first simulated data
sets of 400 sib trios according to the copula model (4) to
generate trait values with a Poisson distribution. We simulated
a map of 10 markers each with four equally frequent alleles
evenly spaced at 11.16-cM intervals, corresponding to re-
combination fraction 0.10 under Haldane’s (1919) no in-
terference map function. A QTL with two equally frequent
alleles was placed in the middle of the map. We generated data
with different values of major-gene heritability h2

mg ¼ s2
mg=

ðs2
mg 1s2

pg 1s2
eÞ and overall genetic heritability h2 ¼ ðs2

mg 1
s2

pgÞ=ðs2
mg 1s2

pg 1s2
eÞ. We removed the QTL genotypes prior

to data analysis.
To determine whether the tested methods have correct type

I error under the null hypothesis of no linkage, we simulated
10,000 replicate data sets. We also conducted simulations to
compare the power of the three methods using 5000 replicate
data sets. We consider trait models with combinative param-
eter values of fl ¼ ð0:5; 1:0Þg3 fh2

mg ¼ ð0; 0:25; 0:4Þg3 fh2 ¼
ð0:6; 0:8Þg, where l is the mean parameter of Poisson dis-
tribution. To make fair power comparisons between the
methods, we used empirical significance thresholds obtained
from the null distribution simulations with the same total
heritability, h2, but assuming that the major gene effect was
h2

mg ¼ 0. To determine the impact of discreteness on the
estimation of covariate effects, we conducted additional sim-
ulations including a covariate that was generated from the
standard normal distribution. We set the regression coefficient
b ¼ 0:5 or 1 and simulated 2000 additional replicate data sets
in each setting. The trait values were connected with the
covariates using a log link function. In this setting, we analyzed
the simulated data using the copula VC method only since the
standard VC method assumes an identity link and thus it is not
appropriate to compare covariate estimates for these two
methods.

We repeated the simulation procedure for censored normal
traits. For ease of computation, we considered sib pairs only.
We simulated 800 sib pairs in each data set. To obtain censored
trait values, we first simulated latent bivariate normal traits in
accordance with the copula model (3) and then censored
those values below a threshold of the latent trait distribution.
We determined the threshold by the proportion of censoring,
denoted by c. We considered trait models with combina-
tive parameter values of fc ¼ ð10%; 25%Þg3 fh2

mg ¼ ð0; 0:25;
0:4Þg3 fh2 ¼ ð0:6; 0:8Þg. Without loss of generality, for all the
trait models we considered, the total variance of the latent trait
values was set to be 1.0. To determine the impact of censoring
on the estimation of covariate effects, we conducted additional
simulations including a covariate that was generated from the
standard normal distribution. We set the regression coefficient
b ¼ 0:5 or 1 and simulated 2000 additional replicate data sets
in each setting. The trait values were connected with the
covariates by an identity link function.

RESULTS

Poisson-distributed traits: Empirical type I error and
power for detecting linkage: Figure 2 shows the empirical
type I error for Poisson (count)-distributed traits when

2320 M. Li et al.



significance was evaluated using the asymptotic null dis-
tribution. The standard VC method gives inflated type
I error for testing linkage, especially when the mean
parameter of the Poisson distribution, l, is small, corre-
sponding to greater departure from normality. For ex-
ample, when l ¼ 0:5 and h2 ¼ 0:8, the type I error is
2.4% at the 1% significance level. We also found that
the type I error for the standard VC method increases
as the overall genetic heritability h2 increases. In con-
trast, the copula VC method gives type I error close to
the nominal levels for all four trait models that we
considered. The type I error for the regression-based
method is slightly higher than that for the copula VC
method, but is nearly under control.

The empirical power of the copula and standard VC
methods and the regression-based method for testing
linkage is shown in Figure 2. Since the standard VC
method has inflated type I error when using the asymp-
totic null distribution, we determined the critical values
for testing linkage using the empirical null distributions
generated with the same parameters except that h2

mg ¼ 0

was assumed for all three methods. As expected, the
power to detect linkage of all three methods increases
as the major gene heritability and overall genetic heri-
tability increase. Our results also show that, for all the
eight trait models considered, the copula VC method
has modest improvement of power to detect link-
age compared to the standard VC method and the
regression-based method.
Trait model parameter and regression coefficient estimates:

The mean parameter estimates and the square root of
mean square errors (MSEs) of the major gene herita-
bility and the overall genetic heritability for both VC
methods are shown in Figure 3. Our results indicate
that the standard VC method underestimates herita-
bility, especially when the mean count of the Poisson
distribution is small. Compared to the overall genetic
heritability, the major gene heritability appears to be
less influenced by discreteness of the Poisson distribu-
tion. Mean estimates averaged 79–91% of the true values
for the major gene heritability and 75–87% of the true
values for the overall genetic heritability. In contrast, the

Figure 2.—Empirical type I error and power of the standard and copula VC methods and the regression-based method for
Poisson-distributed traits. Empirical type I error is based on 10,000 replicates of data sets of 400 sib trios. Empirical power is de-
termined by adjusting for the size under the null model that assumed no major gene effect on the basis of 5000 replicates of data
sets. l is the mean parameter of Poisson distribution. Significance was assessed at the 1% level.
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copula VC method yields unbiased parameter esti-
mates for all trait models that we considered. Further,
the accuracy of the parameter estimates, as measured
by the square root of the MSEs, improves as the major
gene heritability and the overall genetic heritability
increase.

We also investigated the effects of the discreteness of
the Poisson distribution on regression coefficient esti-
mates for the copula VC method (Figure 4). We are
not able to evaluate the regression coefficient estimates
using the standard VC method, since the covariate is
linked with the Poisson-distributed trait values through
a log link function, which is different from the identity
link assumed by the standard VC method. Hence, the
two VC methods are not directly comparable in terms of
regression coefficient estimates. Figure 4 indicates that
the copula VC method yields unbiased estimates of the
regression coefficient for the eight trait models that we
considered. As expected, the accuracy of the parameter
estimates improves as the major gene and overall trait
heritabilities increase.

Censored normal distributed traits: Empirical type I
error and power for detecting linkage: In Figure 5, we show
the empirical type I error for the test of linkage with
censored normal data. As noted by Epstein et al. (2003),
the standard VC method yields inflated type I error,
especially when the proportion of censored observa-
tions is large. Further, the type I error for the standard
VC method increases as the overall genetic heritability

increases. For example, the type I error ranges between
1.2% (when h2 ¼ 0:6 and c ¼ 10%) and 1.7% (when h2 ¼
0:8 and c ¼ 25%) when significance was assessed at
the 1% level. In contrast, the copula VC method yields
type I error that is close to the nominal level.

The empirical power of the standard and the copula
VC methods for testing linkage is shown in Figure 5.
Again, we determined the empirical power by simulat-
ing data under the null model to estimate critical values.
As expected, the power to detect linkage of all three
methods increases as the major gene and overall genetic
heritabilities increase. The power to detect linkage of
all three methods diminishes as the percentage of
censored observations increases, corresponding to less
information about the underlying trait distribution.
Further, the copula VC method provides a modest in-
crease in power to detect linkage over the standard
VC method, consistent with the results of Epstein
et al. (2003), who developed the Tobit VC model to han-
dle censored normal data. The copula VC method is
also more powerful than the regression-based method.

Trait model parameter and regression coefficient estimates:
In Figure 6, we show the mean parameter estimates
and the square root of the MSEs of the major gene
heritability and the overall genetic heritability for both
VC methods. As previously noted by Epstein et al.
(2003), we found that the standard VC method under-
estimates the true values of the heritability parameters.
On average, the estimates of the major gene heritability

Figure 3.—Parameter estimates of the standard and copula VC methods for Poisson-distributed traits (without covariates). l is
the mean of the Poisson distribution. The error bar represents the square root of the mean squared error. Results are based on
2000 replicate data sets of 400 sib trios.
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are 94–99% of the true values and the estimates of the
overall genetic heritability are 92–98% of the true val-
ues for the eight trait models that we considered. Com-
pared to the overall genetic heritability, the major gene
heritability appears to be less influenced by censoring.
As expected, the copula VC method yields unbiased
estimates for both heritability parameters and the ac-

curacy of parameter estimation improves as the per-
centage of censored observations decreases.

We also examined the effects of censoring on estima-
tion of regression coefficients for both VC methods
(Figure 7). We found that the regression coefficient
estimates are notably attenuated toward zero using the
standard VC method. The estimated values are �75% of

Figure 4.—Parameter estimates of the
copula VC method for Poisson-distributed
traits with one covariate generated from
the standard normal distribution. The er-
ror bar represents the square root of the
mean squared error. Results are based on
2000 replicate data sets of 400 sib trios.

Figure 5.—Empirical type I error and power of the standard and copula VC methods and the regression-based method for
censored normal traits. Empirical type I error is based on 10,000 replicates of data sets of 800 sib pairs. Empirical power is de-
termined by adjusting for the size under the null model that assumed no major gene effect on the basis of 5000 replicates of data
sets. c is the percentage of censoring. Significance was assessed at the 1% level.
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the true values for all the eight trait models that we
considered. In contrast, the copula VC method not only
gives unbiased parameter estimates but also shows less
variability.

DISCUSSION

Many traits of scientific interest have nonnormal dis-
tributions. Using Gaussian copulas, we developed a
unified likelihood framework that allows the analysis

of traits with a wide range of distributions. Unlike the
standard VC method, our copula VC method does not
require the traits to be normally distributed. In partic-
ular, the standard VC method is a special case of the
copula VC method when the traits are distributed as
multivariate normal. Our method allows the analysis
of continuous, discrete, and censored traits, including
binary, polychotomous, count, and continuous skewed
data. Through the use of link functions, the method can
easily incorporate covariates to study the influence of

Figure 6.—Parameter estimates of the standard and copula VC methods for censored normal traits (without covariates). c is
the percentage of censoring. The error bar represents the square root of the mean squared error. Results are based on 2000
replicate data sets of 400 sib trios.

Figure 7.—Parameter estimates of the standard and copula VC methods for censored normal traits with one covariate gener-
ated from the standard normal distribution. Results are based on 2000 replicate data sets of 800 sib pairs. The error bar represents
the square root of the mean squared error. The total variance of the trait is fixed at 1. The percentage of censoring is 25%.
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environmental effects. For simplicity, we simulated sib-
ship data in this article, but our method can be em-
ployed for the analysis of large pedigrees, although this
becomes computationally more challenging.

The copula VC method yields unbiased parameter
estimates and the correct type I error for testing link-
age with a variety of nonnormal traits. In contrast, the
standard VC method gives biased parameter estimates
and inflated type I error and therefore requires in-
tensive simulations to evaluate significance levels ap-
propriately. The type I error of the regression-based
method (Sham et al. 2002) is generally under control;
however, that method is less powerful than the copula
VC method. We found that for Poisson and censored
normal traits, the major gene and overall genetic her-
itabilities are underestimated using the standard VC
method. Further, for censored normal traits, the esti-
mated regression coefficients for covariate effects are
attenuated toward zero.

Although our article is focused on linkage analysis,
our method can be employed in association studies by
including the genetic markers as covariates. It is unclear
that Wang and Huang’s (2002) and Basrak et al.’s
(2004) methods can be extended to test for association
since the covariates have been regressed out in the data
standardization procedure. Our results suggest that the
copula VC method could be used to improve power of
the association tests in the quantitative trait transmis-
sion/disequilibrium test (Abecasis et al. 2000), which
incorporates the tested markers as covariates in a stan-
dard VC model that assumes multivariate normality.

For continuous traits, the copula VC method implic-
itly assumes that the inverse-normal transformed traits
are multivariate normal, an assumption that is also made
by the two-stage approach (Wang and Huang 2002;
Basrak et al. 2004) and the semiparametric approach
(Diao and Lin 2005). In contrast to these transforma-
tion-based methods, by taking Radon–Nikodym deriva-
tives, we derived the joint probability/density function
of the original trait values, including discrete and mixed
outcomes. Moreover, by using generalized linear mod-
els, the copula VC method can easily accommodate any
traits with marginal distributions belonging to the ex-
ponential family (McCullagh and Nelder1989). Com-
pared to other VC-based methods for nonnormal traits
(Lange et al. 1989; Wan et al. 1998; Epstein et al. 2003),
the method proposed here is more general and flexible.

In this article, we compared the copula VC method
with the regression-based method for Poisson and cen-
sored normal traits and found that although both meth-
ods controlled type I error rates, our method appeared
to be slightly more powerful. Chen et al. (2004, 2005)
used GEEs to develop two robust score tests based on
higher moments of the trait distributions and showed
that the regression-based method (Sham et al. 2002)
was equivalent to a robust score test derived from the
GEE framework. Using the regression-based method as

a benchmark, we expect that the copula VC method
might be more powerful than the GEE-based method if
the joint distributions are nearly correctly specified.
However, if the joint distributions of the traits are hard
to specify, then the GEE-based method may be pre-
ferred. We also expect that methods that incorporate
higher moments of the trait distribution into a robust
score test framework may improve the performance of
the basic GEE approach so that it performs nearly as well
as our maximum-likelihood approach.

The copula VC method assumes that the marginal
distributions of the traits are known and, for practical data
analysis, this assumption should be confirmed through
model diagnostic procedures. One approach is to use the
Q–Q plot to validate the parametric distribution assump-
tion. If the parametric assumption is in question, to make
our method practical, one could replace GðyÞ with the
empirical CDF ĜðyÞ. The strong law of large numbers
ensures that ĜðyÞ converges to GðyÞ almost surely, which
means that the empirical CDF can be used to estimate the
marginal distribution of any trait of interest. This ap-
proach is not applicable to discrete traits.

In this article, we employed Gaussian copulas to
model the joint distributions of the traits. Gaussian
copulas are a powerful tool for modeling multiple cor-
related variables and enjoy the flexibility of allowing
arbitrary correlation structures and modeling high-
dimensional data, whereas many other copulas are re-
stricted to two dimensions. Moreover, Gaussian copulas
are conceptually simple and have intuitive connections
with the familiar multivariate normal distribution.
We recognize that the Gaussian copulas are just one
way to model nonnormally distributed traits. Similar
approaches might be employed for other families of
copulas, such as the t- or Archimedian copulas (Nelson

1999). It might be worth comparing the performance of
the Gaussian copulas with these copulas, and such a
study might offer even more flexibility in analyzing
quantitative traits with different distributions.

In summary, we have developed a unified copula VC
approach that allows the analysis of traits with a variety
of distributions. Our method relaxes the multivariate
normality assumption as employed by the standard VC
method. We illustrated the utility of the copula VC
method by simulating Poisson and censored normal
traits. We simulated sibship data for simplicity, but our
method can be employed for the analysis of larger
pedigrees. We believe that the copula VC method pro-
vides a useful tool for the mapping of genes that influ-
ence nonnormally distributed quantitative traits.
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APPENDIX A

We briefly describe the derivation of the joint density function for bivariate censored normal variables. Let ðz1; z2ÞT

follow a bivariate normal distribution with mean ðm1;m2Þ
T and variance–covariance matrix

s2
1 gs1s2

gs1s2 s2
2

� �
:

Assume that ðz1; z2ÞT are censored below a threshold y* such that y1 ¼ y* if z1 # y* and y1 ¼ z1 otherwise, and y2 is
similarly defined. Then ðy1; y2ÞT are censored bivariate normal variables. The density of ðy1; y2ÞT takes the following
form:

1. If both y1 and y2 are censored at y*, then both of them can be regarded as coming from a Bernoulli distribution with
the probability parameter being the proportion of censoring Fððy* � mjÞ=sjÞ, j ¼ 1; 2. By Equation 4, the joint
density function of ðy1; y2ÞT is

f ðy1; y2Þ ¼ F2;g
y* � m1

s1
;
y* � m2

s2

� �
;

where F2;g is the standard bivariate normal cumulative distribution function with correlation parameter g.
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2. If y1 is censored at y* and y2 is not, then ðy1; y2ÞT can be regarded as mixed type outcomes with y1 being Bernoulli and
y2 being normal. By Equation 5, the joint density function of ðy1; y2ÞT is

f ðy1; y2Þ ¼
1

s2
f

y2 � m2

s2

� �
F

ðy* � m1Þ=s1 � gðy2 � m2Þ=s2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � g2

p
 !

:

3. If y2 is censored at y* and y1 is not, then ðy1; y2ÞT can be regarded as mixed type outcomes with y2 being Bernoulli and
y1 being normal. By Equation 5, the joint density function of ðy1; y2ÞT is

f ðy1; y2Þ ¼
1

s1
f

y1 � m1

s1

� �
F

ðy* � m2Þ=s2 � gðy1 � m1Þ=s1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � g2

p
 !

:

4. If both y1 and y2 are not censored, then the joint density of them is

f ðy1; y2Þ ¼
1

s1s2
f2;g

y1 � m1

s1
;
y2 � m2

s2

� �
;

where f2;g is the density function for standard bivariate normal with correlation parameter g.

APPENDIX B

We describe a Gauss–Newton type algorithm (Ruppert 2005) to maximize the likelihood L in (6). In the (l1 1)th
iteration, the parameters u are updated by

uðl11Þ ¼ uðlÞ 1 d
1

n

Xn
i¼1

@ logLiðuðlÞÞ
@u

� �
@ logLiðuðlÞÞ

@u

� �T
" #�1

@ logLiðuðlÞÞ
@u

;

where d is the step-halving term that starts at 1 and halves until logLðuðl11ÞÞ. logLðuðlÞÞ at iteration l. This algorithm
guarantees that the likelihood increases progressively over iterations. The algorithm stops when the increase in the
likelihood is no longer possible or the difference between two consecutive updates is smaller than a prespecified
precision level.
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