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We use genotype data generated by the International HapMap Project to dissect the relationship between sequence
features and the degree of linkage disequilibrium in the genome. We show that variation in linkage disequilibrium is
broadly similar across populations and examine sequence landscape in regions of strong and weak disequilibrium.
Linkage disequilibrium is generally low within ∼15 Mb of the telomeres of each chromosome and noticeably elevated
in large, duplicated regions of the genome as well as within ∼5 Mb of centromeres and other heterochromatic
regions. At a broad scale (100–1000 kb resolution), our results show that regions of strong linkage disequilibrium are
typically GC poor and have reduced polymorphism. In addition, these regions are enriched for LINE repeats, but
have fewer SINE, DNA, and simple repeats than the rest of the genome. At a fine scale, we examine the sequence
composition of “hotspots” for the rapid breakdown of linkage disequilibrium and show that they are enriched in
SINEs, in simple repeats, and in sequences that are conserved between species. Regions of high and low linkage
disequilibrium (the top and bottom quartiles of the genome) have a higher density of genes and coding bases than
the rest of the genome. Closer examination of the data shows that whereas some types of genes (including genes
involved in immune response and sensory perception) are typically located in regions of low linkage disequilibrium,
other genes (including those involved in DNA and RNA metabolism, response to DNA damage, and the cell cycle)
are preferentially located in regions of strong linkage disequilibrium. Our results provide a detailed analysis of the
relationship between sequence features and linkage disequilibrium and suggest an evolutionary justification for the
heterogeneity in linkage disequilibrium in the genome.

[Supplemental material is available at www.genome.org. The following individuals kindly provided reagents, samples,
or unpublished information as indicated in the paper: J. Mullikin, G. McVean, and C. Freeman.]

Large-scale data sets providing information on linkage disequi-
librium for >1 million markers are now available (The Interna-
tional HapMap Consortium 2003; Hinds et al. 2005). These data
sets will aid in the design and interpretation of genome-wide
association studies and facilitate the identification of alleles un-
derlying susceptibility to complex disease (Cardon and Abecasis
2003; Hirschhorn and Daly 2005). An example of the utility of
these resources is the recent positional cloning of a susceptibility
gene for age-related macular degeneration (Edwards et al. 2005;
Haines et al. 2005; Klein et al. 2005; Zareparsi et al. 2005).

In addition to facilitating genome-wide association studies,
these data sets also provide us with the best opportunity yet to
explore the relationship between local sequence features and pat-
terns of linkage disequilibrium (Abecasis et al. 2005). Although
this relationship has been examined in several previous studies
(for examples, see Eisenbarth et al. 2000; Yu et al. 2001; Dawson
et al. 2002), these have focused on relatively small amounts of
data. The results of these initial studies show that linkage dis-
equilibrium is strongly influenced by the local recombination

rate (Dawson et al. 2002) and correlated with other factors that
are associated with local recombination rates, such as GC con-
tent, gene density, and the presence of SINE or Alu repeats (Ful-
lerton et al. 2001; Yu et al. 2001; Dawson et al. 2002). New large-
scale data sets will enable us to more precisely characterize and
quantify the relationship between these types of sequence fea-
tures and linkage disequilibrium, thus furthering our under-
standing of genome architecture.

The effects of population history on linkage disequilibrium
have been extensively studied analytically (for examples, see
Ohta and Kimura 1969; Nei and Li 1973), through simulation
studies (Hudson 1990; Kruglyak 1999) and in data sets that in-
clude genotype data collected in multiple populations (Tishkoff
et al. 1996; Gabriel et al. 2002). Many of these effects are now
well understood—for example, it is generally accepted that
whereas population bottlenecks, geographic subdivision, and
natural selection can increase the extent of linkage disequilib-
rium, population growth and random mating tend to decrease
the extent of linkage disequilibrium in a genome.

In addition to these population genetic factors, the extent of
linkage disequilibrium in a particular genomic region can also be
influenced by the physical characteristics of the surrounding
DNA sequence (Abecasis et al. 2005; Nordborg and Tavare
2005). In principle, local sequence features can affect linkage
disequilibrium in several different ways, both directly and indi-
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rectly. For example, some types of sequences (such as GC-rich
sequences) (see Fullerton et al. 2001) may be associated with
higher rates of recombination and/or mutation, two phenomena
that could directly lower surrounding levels of linkage disequi-
librium. In other types of sequences (such as protein-coding se-
quences), changes brought about by recombination or mutation
might be more likely to affect the fitness of an individual—and
these sequences could be indirectly associated with unique pat-
terns of linkage disequilibrium as a consequence of natural se-
lection.

Here, we use data from the International HapMap Consor-
tium (2003) to characterize the relationship between local se-
quence features and patterns of linkage disequilibrium in the
genome in three different populations. Our results show that
regions of weak and strong linkage disequilibrium are remarkably
consistent across populations and suggest that GC content, DNA
polymorphism, and repeat content are strongly associated with
the local extent of linkage disequilibrium. Additionally, we find
that genes and coding sequences are enriched in regions of high
and low disequilibrium compared with the rest of the genome.
We use the Gene Ontology database to aggregate genes according
to their functional roles, and we show that different types of
genes locate preferentially in regions of high and low disequilib-
rium.

Results

Genotype data

All of our analyses are based on release 16c (June 2005) of the
genotype data generated by the International HapMap Consor-
tium (2003). Genotypes for all 22 autosomes and the X chromo-
some were downloaded from the HapMap Project Web site
(http://hapmap.cshl.org/) and within each group of samples data
were filtered to focus on markers with minor allele frequency
>5%.

Variation in linkage disequilibrium in the genome

We fitted curves to model the decay of r2 within sliding windows
distributed throughout the genome. Our approach is based on
the simple model of Ohta and Kimura (1969), which predicts that
the expected disequilibrium between alleles at any two loci i and
j is E(r2

ij) = 1/(1 + Rij). In this model, the population recombina-
tion rate, Rij = 4Ncij, is a function of N, the effective population
size, and cij, the recombination fraction between markers i and j.
As detailed in the Methods, we fitted a parameter corresponding
to the per base-pair population recombination rate within each
genomic window and used it to model disequilibrium for all pairs
of markers within the window. The fitted parameter defines a
curve for the decay of linkage disequilibrium in each window and
provides a means to compare degree of disequilibrium in any two
windows of the genome. Here, our comparisons are simply based
on examining the fitted values for marker pairs separated by an
arbitrary distance (for this model, examining the fitted values at
any other distance would result in the same ordering of regions).
Disequilibrium coefficients for an exemplar region, a decay curve
generated by taking the average of observed disequilibrium coef-
ficients, and the fitted curve using the model of Ohta and Kimura
(1969) are presented in Figure 1.

The top panels in Figures 2 (CEU sample), 3 (YRI sample),
and 4 (CHB+JPT samples) summarize the properties of the fitted
curves for the entire genome (divided into 100,000-bp windows)

by plotting fitted r2 value for markers separated by 30,000 bp (for
the CEU sample and for the combined CHB+JPT samples) or
markers separated by 10,000 bp (for the YRI sample, which shows
much less linkage disequilibrium overall). Using these 100,000-
bp windows, the model explained 34.2% of the variance in pair-
wise linkage disequilibrium coefficients in the CEU sample,
19.6% of the variance in the YRI sample, and 37.5% of the vari-
ance in the CHB+JPT samples. Part of the difference in the pro-
portion of variance explained is due to the fact that the CHB+JPT
and CEU samples exhibit higher levels of disequilibrium, whereas
the YRI samples exhibit much lower disequilibrium. When link-
age disequilibrium is lower (as in the YRI samples), a model pre-
dicting that linkage disequilibrium decays with distance will only
be able to explain less of the observed variation because many
more of the coefficients will be near background levels, and sto-
chastic variation will play a proportionately larger role in deter-
mining observed levels of disequilibrium. The proportion of the
variance in pairwise linkage disequilibrium explained decreased
when we used larger 1000-kb windows, to 29.6% in the CEU
samples, 17.3% in the YRI samples, and 32.8% in the CHB+JPT
samples.

The genome-wide view of linkage disequilibrium in the top
panels of Figures 2–4 highlights several important patterns. First,

Figure 1. Pairwise disequilibrium coefficients (r2) for one window in the
genome. Tan circles denote the observed values. Green line denotes the
average of observed values. Red line denotes the curve resulting from the
fitted model, which models the decay of linkage disequilibrium as a func-
tion of the per base-pair population recombination rate, 4N�, and the
distance between markers dij (see Methods). The example refers to
marker pairs in the window from 2–3 Mb on chromosome 3.

Smith et al.

1520 Genome Research
www.genome.org



the degree of linkage disequilibrium is much greater in the CEU
and CHB+JPT samples than in the YRI sample (in fact, the degree
of disequilibrium for markers separated by ∼30 kb in the CEU and
CHB+JPT samples is similar to the degree of disequilibrium be-
tween markers separated ∼10 kb in the YRI samples). This is in
agreement with results for other comparisons of samples of Af-
rican descent with samples of European or Asian descent (Gabriel
et al. 2002; Ke et al. 2004; Liu et al. 2004), all of which show
much less linkage disequilibrium in African-descent samples. Sec-

ond, the relative degree of linkage dis-
equilibrium is broadly similar across
populations—regions that exhibit
above-average linkage disequilibrium in
any one sample typically also exhibit
above-average linkage disequilibrium in
the other samples. Examples of this in-
clude a region centered at ∼50 Mb on
chromosome 3, which shows strong dis-
equilibrium in all samples and regions of
very strong disequilibrium surrounding
the centromeres of chromosomes 5, 8,
11, 12, 16, and X in all three populations
(cf. Figs. 2, 3, 4). However, note that we
refer to the overall degree of linkage dis-
equilibrium in a region rather than to
specific combinations of associated al-
leles—which can differ between popula-
tions both in regions of strong and weak
disequilibrium. As expected (Schaffner
2004), linkage disequilibrium in all
populations was generally higher on the
X chromosome—which has a smaller ef-
fective population size, since males only
carry one copy—than in the autosomes.

Several genomic patterns are appar-
ent in the distribution of linkage dis-
equilibrium. For example, linkage dis-
equilibrium is generally weak near chro-
mosome ends, probably due to the high
recombination rate of these regions in
male meiosis, and stronger around cen-
tromeres and other internal portions of
each chromosome, where recombina-
tion rates are lower on average (Weissen-
bach et al. 1992; Broman et al. 1998; Yu
et al. 2001; Kong et al. 2002). In further
agreement with recombination rate
maps of the genome, linkage disequilib-
rium is generally stronger in the large
chromosomes—which have a lower
sex-averaged recombination rate—and
weaker in the small chromosomes—
which have a higher sex-averaged re-
combination rate.

Correlation of linkage disequilibrium
with sequence features

In order to characterize the relationship
between linkage disequilibrium and ge-
nomic sequence characteristics, we first
calculated the Spearman rank correla-
tion coefficient between a series of se-

quence features and the estimated degree of linkage disequilib-
rium in each region. The Spearman correlation coefficient is ro-
bust to non-normality of the variables being examined and
appropriate for these types of data, where some features have
highly skewed distributions. The results for each population and
for three different window sizes (100, 500, and 1000 kb) are sum-
marized in Tables 1 and 2. In Table 1, it is clear that the strongest
correlations are observed when linkage disequilibrium levels in
two populations are compared.

Figure 2. Genome-wide summary of fitted linkage disequilibrium values and identified “hotspots”
for the rapid breakdown of linkage disequilibrium. (Top) The fitted disequilibrium coefficients for
markers separated by 30 kb. Disequilibrium coefficients were calculated within 100-kb windows dis-
tributed throughout the genome. (Bottom) Intermarker intervals (in red), where linkage disequilibrium
decays very rapidly, such that disequilibrium between spanning marker pairs is generally low (for
details, see text). Evaluated intervals where disequilibrium did not appear to decay very rapidly are
marked in light blue.
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Nevertheless, several other interesting patterns emerge. In-
creased GC content is strongly associated with lower levels of
disequilibrium (r ≈ �0.33) and the strength of the association
appears similar for various window sizes. Sequence polymor-
phism, which we quantified using the per base-pair nucleotide
diversity (�, see Methods), is also strongly associated with lower
levels of disequilibrium (r ≈ �0.40) across the various window
sizes. In contrast, genes and related features (introns, exons, and

coding bases) are weakly associated with
increased linkage disequilibrium levels
when windows of 100 kb are considered
(r ≈ 0.01–0.05) but associated with de-
creased disequilibrium when larger
1000-kb windows are considered
(r ≈ �0.03 to �0.08). Given the large
sample size, these differences are signifi-
cant—and may reflect that while genes
themselves exhibit a high degree of dis-
equilibrium (because of reduced recom-
bination rates or because alleles are un-
dergoing natural selection), there might
be increased recombination and there-
fore decreased linkage disequilibrium in
the regions between and around genes.
The presence of transcription factor
binding sites (r ≈ �0.10), conserved
noncoding sequences (r ≈ �0.14), se-
quences that were conserved in mul-
tispecies alignments (r ≈ �0.09), and the
presence of sequences that are conserved
in pairwise comparisons between the
completed human genome sequence
and the rat (r ≈ �0.18) (Gibbs et al.
2004) or mouse genomes (r ≈ �0.19)
(Waterston et al. 2002) were all associ-
ated with decreased levels of linkage dis-
equilibrium. Finally, the repeat compo-
sition of each region was strongly asso-
ciated with the observed levels of linkage
disequilibrium, and these correlations
appeared to significantly increase in
strength when larger genomic windows
were considered. The total repeat con-
tent of a region and the presence of LINE
repeats was associated with increasing
levels of linkage disequilibrium (r ≈ 0.26
for 100-kb windows and r ≈ 0.36 for
1000-kb windows), whereas some other
repeat types, especially SINE repeats
(mostly Alu repeats, r ≈ �0.18 for 1000-
kb windows) and simple repeats
(r ≈ �0.31), were strongly associated
with decreased levels of linkage disequi-
librium.

Table 2 shows the relationship be-
tween chromosomal location and link-
age disequilibrium levels. As expected
from prior knowledge of recombination
rate variation in humans (Yu et al. 2001;
Kong et al. 2002), proximity to telo-
meres is strongly associated with de-
creased levels of linkage disequilibrium

(r ≈ �0.32 for 1000-kb windows within 15 Mb of a telomere),
whereas proximity to centromeres is associated with increased
levels of linkage disequilibrium (r ≈ 0.17 for regions within 5 Mb
of a centromere). In addition, we note increased levels of linkage
disequilibrium surrounding regions of heterochromatin (r ≈ 0.12
for regions within 5 Mb of heterochromatic sequence) and in
large duplicated regions of the genome. These results suggest that
in addition to centromeres, heterochromatin and large genomic

Figure 3. Genome-wide summary of fitted linkage disequilibrium values and identified “hotspots”
for the rapid breakdown of linkage disequilibrium. (Top) The fitted disequilibrium coefficients for
markers separated by 30 kb. Disequilibrium coefficients were calculated within 100-kb windows dis-
tributed throughout the genome. (Bottom) Intermarker intervals (in red), where linkage disequilibrium
decays very rapidly, such that disequilibrium between spanning marker pairs is generally low (for
details, see text). Evaluated intervals where disequilibrium did not appear to decay very rapidly are
marked in light blue.
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duplications are also associated with reduced recombination
rates. To evaluate whether these large chromosomal features
could explain the associations presented in Table 1, we repeated
our correlation analysis excluding 15 Mb of sequence surround-
ing telomeres, centromeres, and heterochromatin. Our results
did not change substantially, except for the correlation between
disequilibrium and satellite repeats, which disappeared (it ap-
pears that satellite repeats are associated with linkage disequilib-
rium mainly because they are preferentially located near centro-

meres, and there is no evidence for an
association between satellite repeats and
recombination when the rest of the ge-
nome is considered alone).

One limitation of the analyses pre-
sented in Tables 1 and 2 is that they do
not explicitly account for the similarities
between sequence feature profiles and
the degree of linkage disequilibrium in
consecutive genomic windows. While
these similarities should not bias esti-
mates of the correlation coefficients,
they can affect significance tests for
these coefficients—since these tests typi-
cally assume that all observations are in-
dependent. For each population and
window size, we repeated our analysis by
selecting a series of 280 windows spaced
10 Mb apart along the genome and that
thus were nearly independent. Although
this analysis discards much of the avail-
able data, it produced correlation coeffi-
cients similar to those reported in Tables
1 and 2, and all coefficients with abso-
lute value >0.15 remained significant
(P < 0.05).

Base composition in regions of high
and low linkage disequilibrium

To further characterize the relationship
between linkage disequilibrium and se-
quence variation in the genome, we di-
vided the genome into quartiles accord-
ing to the estimated level of linkage dis-
equilibrium in each 100-kb window.
Regions not genotyped by the HapMap
project were left unclassified. Initially,
we carried out the analysis in each popu-
lation separately, but since results were
similar, we averaged the ranking for
each window across populations for our
final analysis. To ensure that this orga-
nization of the genome into quartiles
was not an artifact of differences in SNP
ascertainment across the genome, we
calculated the average minor allele fre-
quency (MAF) of SNPs in each of the
four quartiles. Frequencies of the SNPs
used to estimate linkage disequilibrium
levels (all with MAF >0.05) were very
similar in regions of high, low, and in-
termediate levels of linkage disequilib-
rium in both the CEU (average MAF of

0.268 in Q1, 0.270 in Q2, 0.269 in Q3, and 0.274 in Q4), the
CHB+JPT (0.269 in Q1, 0.272 in Q2, 0.271 in Q3, and 0.270 in
Q4) and in the YRI (0.257 in Q1, 0.260 in Q2, 0.257 in Q3, and
0.261 in Q4) samples.

Within each quartile, we calculated the proportion of base
pairs contained within genes and related features, within tran-
scription factor binding sites and other conserved sequences, and
also within different types of repeats. The results are summarized
in Table 3, which tabulates the number of bases (per 10,000)

Figure 4. Genome-wide summary of fitted linkage disequilibrium values and identified “hotspots”
for the rapid breakdown of linkage disequilibrium. (Top) The fitted disequilibrium coefficients for
markers separated by 10 kb. Disequilibrium coefficients were calculated within 100-kb windows dis-
tributed throughout the genome. (Bottom) Intermarker intervals (in red), where linkage disequilibrium
decays very rapidly, such that disequilibrium between spanning marker pairs is generally low (for
details, see text). Evaluated intervals where disequilibrium did not appear to decay very rapidly are
marked in light blue.
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present in each of several categories for the different quartiles.
For all of the features summarized in Table 3, the differences in
base composition between the different genomic quartiles are
highly significant (P < 10�4) when an F-test is used to compare
composition of the 100-kb windows.

Most of the differences in base composition are consistent
with the correlation results presented in Table 1. For example, it
is clear that CG content decreases gradually as linkage disequi-
librium increases (from 4349 CG nucleotides per 10,000 bases in
the quartile of the genome with the lowest disequilibrium to

Table 1. Spearman rank correlation between disequilibrium and sequence features in windows of 100, 500, and 1000 kb

CEU sample YRI sample CHB+JPT sample

100 kb 500 kb 1000 kb 100 kb 500 kb 1000 kb 100 kb 500 kb 1000 kb

LD in other populations
CEU 1.00 * 1.00 * 1.00 * 0.81 * 0.86 * 0.89 * 0.86 * 0.89 * 0.90 *
YRI 0.81 * 0.86 * 0.88 * 1.00 * 1.00 * 1.00 * 0.80 * 0.85 * 0.88 *
CHB+JPT 0.84 * 0.88 * 0.89 * 0.79 * 0.84 * 0.87 * 1.00 * 1.00 * 1.00 *

Basic sequence features
GC content �0.33 * �0.33 * �0.33 * �0.34 * �0.34 * �0.35 * �0.33 * �0.33 * �0.33 *
CpG Islands �0.07 * �0.13 * �0.17 * �0.06 * �0.13 * �0.18 * �0.07 * �0.12 * �0.16 *
Polymorphism (�) �0.38 * �0.43 * �0.42 * �0.37 * �0.40 * �0.39 * �0.36 * �0.41 * �0.41 *

Genes and related features
Gene count 0.01 �0.04 * �0.08 * 0.01 �0.05 * �0.08 * 0.01 �0.04 * �0.07 *
Genic bases (intron, exon, UTR) 0.05 * 0.00 �0.03 0.05 * �0.01 �0.05 * 0.05 * 0.00 �0.03
Coding bases 0.03 * �0.02 �0.06 * 0.03 * �0.02 �0.06 * 0.03 * �0.02 �0.05
Exonic bases 0.01 �0.04 * �0.08 * 0.01 �0.04 * �0.09 * 0.01 �0.04 �0.07 *
Intronic bases 0.05 * 0.00 �0.03 0.04 * �0.01 �0.05 * 0.05 * 0.00 �0.03
UTR (3� and 5�) �0.01 �0.06 * �0.10 * �0.01 �0.06 * �0.11 * �0.01 �0.06 * �0.09 *

Other features
Bases in transcription factor

binding sites �0.10 * �0.10 * �0.09 * �0.11 * �0.11 * �0.10 * �0.10 * �0.10 * �0.09 *
Bases in transcribed fragmentsa �0.03 * �0.03 �0.03 �0.03 * �0.02 �0.02 �0.03 * �0.02 �0.02
Predictions of conserved elements

(phastCons) �0.09 * �0.08 * �0.07 * �0.09 * �0.09 * �0.09 * �0.09 * �0.08 * �0.07 *
Identical base in alignment with

M. musculus �0.19 * �0.19 * �0.17 * �0.20 * �0.20 * �0.19 * �0.19 * �0.19 * �0.17 *
Conserved noncoding sequence �0.16 * �0.14 * �0.12 * �0.17 * �0.15 * �0.13 * �0.16 * �0.14 * �0.12 *
Identical base in alignment with R.

norvegicus �0.18 * �0.18 * �0.17 * �0.19 * �0.20 * �0.18 * �0.18 * �0.19 * �0.17 *
Repeat content

Total bases in repeats 0.25 * 0.34 * 0.35 * 0.26 * 0.36 * 0.37 * 0.25 * 0.33 * 0.34 *
Bases in LINE repeats 0.27 * 0.34 * 0.36 * 0.27 * 0.34 * 0.37 * 0.27 * 0.33 * 0.36 *
Bases in SINE repeats �0.12 * �0.15 * �0.18 * �0.11 * �0.15 * �0.19 * �0.12 * �0.14 * �0.17 *
Bases in LTR repeats 0.00 0.06 * 0.09 * �0.01 0.08 * 0.11 * 0.00 0.06 * 0.08 *
Bases in DNA repeats �0.03 * �0.08 * �0.12 * �0.03 * �0.09 * �0.13 * �0.03 * �0.08 * �0.11 *
Bases in simple repeats �0.21 * �0.28 * �0.31 * �0.21 * �0.26 * �0.29 * �0.20 * �0.27 * �0.30 *
Bases in low complexity repeats 0.04 * 0.04 * 0.03 0.05 * 0.07 * 0.06 * 0.05 * 0.06 * 0.04
Bases in satellite repeats 0.03 * 0.02 0.04 0.02 * 0.02 0.04 0.02 * 0.03 0.04
Bases in other repeats 0.05 * 0.07 * 0.08 * 0.06 * 0.08 * 0.08 * 0.05 * 0.08 * 0.09 *

*Correlation is significant at P < 0.0001 level.
aOnly applies to chromosomes 6, 7, 13, 14, 18, 19, 20, 21, 22, and X.

Table 2. Correlation between chromosomal organization and linkage disequilibrium in windows of 100, 500, and 1000 kb

Chromosome organization

CEU sample YRI sample CHB+JPT sample

100 kb 500 kb 1000 kb 100 kb 500 kb 1000 kb 100 kb 500 kb 1000 kb

Within 5 Mb of centromere 0.13 * 0.16 * 0.17 * 0.13 * 0.17 * 0.19 * 0.12 * 0.15 * 0.17 *
Within 10 Mb of centromere 0.10 * 0.12 * 0.14 * 0.11 * 0.14 * 0.16 * 0.09 * 0.11 * 0.13 *
Within 15 Mb of centromere 0.08 * 0.10 * 0.12 * 0.09 * 0.12 * 0.14 * 0.07 * 0.09 * 0.11 *
Within 5 Mb of telomere �0.15 * �0.19 * �0.21 * �0.14 * �0.18 * �0.21 * �0.14 * �0.17 * �0.20 *
Within 10 Mb of telomere �0.21 * �0.26 * �0.29 * �0.20 * �0.26 * �0.29 * �0.19 * �0.25 * �0.27 *
Within 15 Mb of telomere �0.23 * �0.29 * �0.32 * �0.22 * �0.28 * �0.32 * �0.22 * �0.27 * �0.31 *
Within 5 Mb of heterochromatin 0.09 * 0.11 * 0.12 * 0.09 * 0.12 * 0.14 * 0.09 * 0.11 * 0.13 *
Within 10 Mb of heterochromatin 0.08 * 0.09 * 0.11 * 0.08 * 0.10 * 0.13 * 0.08 * 0.10 * 0.12 *
Within 15 Mb of heterochromatin 0.05 * 0.06 * 0.07 * 0.06 * 0.08 * 0.10 * 0.05 * 0.06 * 0.08 *
Large genomic duplications 0.07 * 0.07 * 0.06 * 0.07 * 0.06 * 0.05 0.07 * 0.07 * 0.06 *
Large genomic duplications (cis) 0.05 * 0.04 * 0.03 0.06 * 0.03 0.01 0.04 * 0.03 0.02
Large genomic duplications (trans) 0.06 * 0.10 * 0.09 * 0.07 * 0.09 * 0.09 * 0.07 * 0.10 * 0.10 *

*Correlation is significant at P < 0.0001 level
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3904 CG nucleotides per 10,000 bases in the quartile of the ge-
nome with the highest disequilibrium). However, an interesting
pattern emerged when we examined the distribution of genes
and related features in different sections of the genome. We
found there were significantly more genes (about 10% more) in
the quartiles of the genome with the highest and lowest LD than
in the two quartiles with intermediate levels of linkage disequi-
librium. Specifically, we found ∼6.7 genes per Mb in the two
extreme quartiles and only ∼6.1 genes per Mb in the two middle

quartiles. In a similar fashion, we found more coding bases, ex-
onic bases, and intronic bases in the two extreme quartiles than
in the two middle quartiles. This result is interesting because it
suggests that whereas for some genes it might be advantageous to
locate in regions of strong linkage disequilibrium where fewer
allelic combinations exist, for other genes, the greater sequence
and haplotype diversity present in regions of low disequilibrium
might be favored.

When we examined the proportion of bases in large dupli-

Table 3. Sequence composition of quartiles of the genome, defined according to the extent of linkage disequilibrium

Genome covered by HapMap Genome quantiles, defined using LD

TrendMean (�S.E.) (Low LD) Q1 Q2 Q3 (High LD) Q4

Basic sequence features
GC bases 4080.3 (�2.3) 4349.6 4102.3 3964.8 3904.6 Decreases with LD
Bases in CpG islands 72.0 (�0.7) 93.8 72.8 63.4 57.9 Decreases with LD
Polymorphism (�) 10.1 (�0.02) 11.9 10.6 9.6 8.3 Decreases with LD

Genes and related features
Known genes (per 1000 kb) 6.4 (�0.4) 6.6 6.1 6.2 6.7 U shaped
Genic bases (exon, intron, UTR) 3854.7 (�16.9) 3764.8 3456.9 3603.1 4594.0 U shaped
Coding bases 116.2 (�0.8) 112.4 104.1 112.0 136.2 U shaped
Exonic bases 222.1 (�1.5) 225.8 204.2 214.6 243.9 U shaped
Intronic bases 3678.0 (�16.6) 3584.5 3293.5 3432.5 4401.5 U shaped
UTR (3� and 5�) 105.9 (�0.8) 113.4 100.1 102.6 107.7 U shaped

Other features
Bases in transcription factor

binding sites 101.7 (�0.3) 110.1 107.1 98.7 90.8 Decreases with LD
Bases in transcribed fragmentsa 251.3 (�2.4) 290.9 258.0 232.9 223.3 Decreases with LD
Predictions of conserved

elements (phastCons) 485.0 (�1.5) 520.5 499.1 465.9 454.5 Decreases with LD
Conserved noncoding sequence 139.1 (�0.6) 164.6 154.3 132.1 105.7 Decreases with LD
Identical base in alignment with

M. musculus 2531.5 (�4.7) 2768.9 2678.6 2466.2 2212.2 Decreases with LD
Identical base in alignment with

R. norvegicus 2454.0 (�4.8) 2679.8 2600.5 2395.5 2140.4 Decreases with LD
Repeat content

Total bases in repeats 4787.2 (�5.0) 4421.4 4642.0 4858.8 5226.7 Increases with LD
Bases in LINE repeats 2090.7 (�4.6) 1649.7 1988.4 2235.9 2488.9 Increases with LD
Bases in SINE repeats 1359.7 (�3.9) 1474.0 1307.8 1261.6 1395.3 U shaped
Bases in LTR repeats 851.2 (�2.4) 808.3 872.1 895.0 829.2 ∩ shaped
Bases in DNA repeats 302.6 (�0.7) 306.9 305.2 301.0 297.3 Decreases with LD
Bases in simple repeats 89.0 (�0.3) 109.3 91.2 82.1 73.4 Decreases with LD
Bases in low complexity repeats 57.6 (�0.1) 56.1 56.8 58.9 58.5 Increases with LD
Bases in satellite repeats 20.8 (�1.3) 5.4 6.9 8.4 62.5 Increases with LD
Bases in other repeats 14.0 (�0.2) 10.4 12.0 14.3 19.4 Increases with LD

aOnly applies to chromosomes 6, 7, 13, 14, 18, 19, 20, 21, 22, and X.
Average base counts (per 10,000 bases) and standard errors are presented for each feature.

Table 4. Chromosomal organization and quartiles of the genome, defined according to extent of linkage disequilibrium

Chromosome organization

Genome covered by HapMap Genome quartiles, defined using LD

TrendMean (�S.E.) (Low LD) Q1 Q2 Q3 (High LD) Q4

Within 5 Mb of centromere 555.4 (�9.7) 311.7 355.5 480.5 1074.0 Increases with LD
Within 10 Mb of centromere 1227.0 (�13.9) 973.7 993.8 1138.3 1802.1 Increases with LD
Within 15 Mb of centromere 1919.1 (�16.7) 1670.1 1699.7 1850.0 2456.8 Increases with LD
Within 5 Mb of telomere 392.5 (�8.2) 861.8 367.9 232.4 108.1 Decreases with LD
Within 10 Mb of telomere 806.7 (�11.5) 1721.1 797.5 487.8 220.4 Decreases with LD
Within 15 Mb of telomere 1220.6 (�13.9) 2407.8 1247.8 796.3 430.2 Decreases with LD
Within 5 Mb of heterochromatin 323.2 (�7.5) 180.6 229.2 282.8 600.2 Increases with LD
Within 10 Mb of heterochromatin 760.3 (�11.2) 553.6 644.7 717.3 1125.7 Increases with LD
Within 15 Mb of heterochromatin 1205.7 (�13.8) 1013.4 1167.0 1168.0 1474.3 Increases with LD
Large genomic duplications 365.9 (�6.4) 237.3 283.6 415.1 527.5 Increases with LD
Large genomic duplications (cis) 265.5 (�5.5) 153.5 191.4 307.9 409.1 Increases with LD
Large genomic duplications (trans) 159.8 (�3.9) 118.7 136.2 182.2 201.9 Increases with LD

Proportion of bases in each category (per 10,000 bases) is presented for each genomic quartile.
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cated regions or near telomeres, centromeres, and heterochroma-
tin, our results were again as predicted from the observed corre-
lations (Table 4). For example, we found that regions within 15
Mb of telomeres accounted for 24% of bases (2407 of every
10,000 bases) in the quartile of the genome with the lowest dis-
equilibrium, but only 4% of bases (430 of every 10,000 bases) in
the quartile with high disequilibrium. In contrast, bases in ge-
nomic duplications or surrounding centromeres and heterochro-
matin were enriched in the fraction of the genome exhibiting
high levels of linkage disequilibrium.

Gene categorization in regions of high and low
linkage disequilibrium

In order to examine the differences between genes in regions of
high and low linkage disequilibrium, we used curated gene an-
notations from the Gene Ontology database (Ashburner et al.
2000), excluding annotations that were inferred from electronic
annotation only, as these are considered less reliable (Harris et al.
2004). We then classified each gene, depending on whether it
overlapped with the quartile of the genome with high disequi-

librium or whether it overlapped with the quartile of the genome
with lowest disequilibrium. Genes that overlapped neither quar-
tile, that overlapped both of the extreme quartiles, or that
mapped to a region of the genome where insufficient data was
available were left unclassified. The results are summarized in
Table 5 for a subset of gene ontology categories.

For most functional categories, genes are approximately
equally distributed between the regions showing high and low
linkage disequilibrium. However, a few categories show a skew
that is quite different from the overall observed ratio of ∼0.89:
1.00 (last row in Table 5). For example, genes associated with
immune response (including both genes involved in humoral
and inflammatory immune responses, as well as genes involved
in response to pathogens and parasites), neurogenesis, and neu-
rophysiological processes (including sensory perception) are of-
ten located in regions of low linkage disequilibrium. In contrast,
genes associated with response to DNA damage, the cell cycle, or
DNA and RNA metabolism appear to be more often located in
regions of strong linkage disequilibrium. It is tempting to specu-
late that immune response genes and other genes in regions of
low linkage disequilibrium might represent genes for which great

Table 5. Distribution of genes across regions of high and low linkage disequilibrium

Gene function (GO Term)
Annotated

genes

Assigned to region of
High-Low

Ratio �2 P-valueLow LD High LD

Amine metabolism 167 51 45 0.88 0.14 —
Biological process unknown 648 165 190 1.15 10.45 —
Biosynthesis 447 130 129 0.99 2.43 —
Carbohydrate metabolism 212 74 70 0.95 0.76 —
Catabolism 357 112 90 0.80 0.02 —
Cell adhesion 335 110 78 0.71 0.93 —
Cell cycle 493 119 177 1.49 26.24 <.00001
Cell differentiation 182 70 38 0.54 4.19 .04
Cell motility 180 69 44 0.64 1.67 —
Cell organization and biogenesis 545 138 178 1.29 16.43 .00005
Cell proliferation 876 254 267 1.05 8.25 .004
Cell surface receptor linked signal transduction 670 256 149 0.58 10.99 .0009
Cell-cell signaling 474 181 93 0.51 13.50 .0002
Cellular lipid metabolism 253 87 60 0.69 1.03 —
DNA metabolism 366 74 139 1.88 35.37 <.00001
Immune response 622 232 94 0.41 34.36 <.00001

Includes: humoral immune response 154 54 19 0.35 10.60 .001
Includes: inflammatory response 161 66 18 0.27 18.84 .00001

Intracellular signaling cascade 604 212 150 0.71 1.84 —
Intracellular transport 263 56 95 1.70 19.61 <.00001
Ion transport 213 81 42 0.52 5.84 .02
Lipid metabolism 351 121 87 0.72 0.84 —
Neurogenesis 366 132 67 0.51 10.30 .001
Neurophysiological process 384 149 78 0.52 10.35 .001

Includes: sensory perception 191 82 41 0.50 6.75 .009
Organelle organization and biogenesis 444 107 152 1.42 19.65 <.00001
Organic acid metabolism 226 70 55 0.79 0.05 —
Organogenesis 805 294 162 0.55 16.49 .00005
Phosphorus metabolism 368 99 120 1.21 8.51 .004
Programmed cell death 350 111 85 0.77 0.21 —
Protein localization 174 39 60 1.54 9.76 .002
Protein metabolism 1193 318 375 1.18 23.33 <.00001
Protein transport 159 38 55 1.45 7.53 .006
Reproduction 171 44 43 0.98 0.69 —
Response to stimulus 1346 472 290 0.61 14.78 .0001

Includes: response to DNA damage 154 35 54 1.54 8.85 .003
Includes: response to external biotic stimulus 431 158 56 0.35 30.62 <.00001
Includes: response to external stimulus 825 303 154 0.51 23.53 <.00001
Includes: response to pest, pathogen or parasite 415 154 53 0.34 31.42 <.00001

RNA metabolism 208 41 71 1.73 15.33 .00009
Vesicle-mediated transport 203 61 64 1.05 1.95 —
All SWISS-PROT Entries Examined 7520 2305 2045 0.89 — —
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allelic diversity is advantageous to the species and individuals,
whereas DNA repair genes and other genes in regions of strong
linkage disequilibrium are genes that represent conserved bio-
logical processes where recombination and mutation are likely to
result in deleterious haplotypes that are removed from the popu-
lation by natural selection.

Genes in the same functional category are often clustered
along the genome, and this clustering could contribute to
an observed skew of particular gene categories in regions of
high and low linkage disequilibrium. To investigate this possibil-
ity, we flipped gene positions along each chromosome—a
process that preserves the original clustering but should de-
stroy much of the association between genes and regions of
high and low disequilibrium. We then repeated our analysis
for this flipped data set. In the flipped data set, we observed
no gene categories with a significant skew at P < 0.001 compared
with 18 skewed categories in the original data. Thus, it appears
that the preferential localization of categories in regions of
high and low disequilibrium is not simply a result of chance
clustering.

Hotspots for the breakdown of linkage disequilibrium

The analyses in the previous sections examine variation in link-
age disequilibrium at a very broad scale (100,000s to 1,000,000s
of base pairs). In order to better characterize fine-scale variation
in linkage disequilibrium, we identified hotspots for the break-
down of linkage disequilibrium (Jeffreys et al. 2001; McVean et
al. 2004). Initially, we defined hotspots as segments of <10 kb
where r2 between any two flanking markers did not exceed 0.10.
In each sample, the maximum spanning r2 for the intervals we
evaluated was >0.70 on average, and our threshold of 0.10 se-
lected 2%–3% of all intervals. Inspection of the results revealed
that this definition favored regions with slightly lower marker
density and greater distance between markers. Thus, we refined
our definition to (1) select all intervals defined by pairs of con-
secutive markers separated by <10 kb; (2) for each interval, iden-
tify the flanking pair of markers and select five equally spaced
markers covering 40 kb on each side of the interval (for a total
of 12 markers); (3) calculate the maximum spanning r2 across
the interval, using the two consecutive markers and the
five flanking markers on either side (that is, by examining 36
pairings of markers); (4) organize intervals into 100-bp bins ac-
cording to the distance between flanking markers and, in each
bin, label the 2% of intervals with the smallest spanning r2 as
regions of rapid breakdown of disequilibrium. The distribution of
the resulting hotspots is summarized in the bottom panels of
Figures 2 (CEU), 3 (YRI), and 4 (CHB+JPT). Again, we observe
great variation in the distribution of these hotspots across every
chromosome, but good consistency across samples. Each chro-
mosome includes both regions that are densely covered in
hotspots and regions of several megabases without any such
hotspots.

In total, we identified 14,524 such hotspots covering
44,760,378 bp in the CEU sample (2.0% of examined intervals,
2.0% of examined bases), 15,622 hotspots covering 47,246,212
bp in the YRI sample (2.0% of intervals, 2.0% of bases), and
12,606 hotspots covering 40,420,681 bp in the CHB+JPT sample
(2.0% of intervals, 2.0% of bases). Overall, the maximum span-
ning r2 for these intervals was 0.065, 0.060, and 0.061 on average,
for the CEU, YRI, and CHB+JPT samples, respectively. However,
the thresholds used to define an interval varied slightly between

populations and by interval size. For example, in the CEU
sample, intervals of 900–1000 bp were classified as hotspots if the
maximum spanning r2 was <0.15, but a stricter threshold requir-
ing the maximum spanning r2 <0.07 was applied for intervals of
9900–10,000 bp. Regions classified as hotspots in one population
typically exhibited rapid decay of linkage disequilibrium in the
other populations too. For example, in the CEU samples, the
average maximum spanning r2 was 0.77 for all 716,624 intervals
we examined, but only 0.30 for regions that were identified as
hotspots in the YRI samples and 0.20 for regions that were iden-
tified as hotspots in the CHB+JPT samples. Among the
44,760,378 bp classified as being in hotspots in the CEU sample,
10,736,096 bp (24%) were also classified as hotspots in the YRI
sample and 15,128,014 (34%) were also classified as hotspots in
the CHB+JPT sample. Hotspots that overlapped between popula-
tions did not appear to be “hotter” than those that did not over-
lap—that is, they did not exhibit significantly lower values for
the maximum spanning r2 statistic.

Other strategies have been proposed to identify hotspots
for the breakdown of linkage disequilibrium (e.g., Li and Ste-
phens 2003; McVean et al. 2004). One of these definitions
(McVean et al. 2004) has recently been used to construct a
recombination rate map of the whole genome (submitted to
Nature by the International HapMap Consortium). We compared
recombination rates in hotspots identified through our model
and in the remainder of the genomic sequence using the
recombination rate estimates of McVean and colleagues for
the 10 HapMap ENCODE regions (Supplemental Table 1).
The average recombination rate was 16.4 * 10�8 per base pair per
generation for the CEU hotspots, 18.8 * 10�8 for the CHB+JPT
hotspots, and 9.6 * 10�8 for the YRI hotspots. For the remainder
of the ENCODE sequence, recombination rates were estimated
at 1.03 * 10�8 (CEU), 0.92 * 10�8 (CHB+JPT), and 0.93 * 10�8

(YRI). Thus, we expect that the 2% of the sequence we classi-
fied as hotspots for the breakdown of linkage disequilibrium ac-
counts for ∼17%–29% of recombination events (Supplemental
Table 1).

Sequence features of recombination hotspots

We compared the sequence composition of potential recombi-
nation hotspots with the sequence composition of other ge-
nomic intervals for which we calculated the maximum spanning
r2. Our results are summarized in Tables 6 and 7. Note that
because the HapMap project preferentially targeted genes and
coding polymorphisms, the average sequence composition
in Tables 6 and 7 is slightly different from that in Tables 3 and 4.
For example, the intervals we evaluated when searching for
hotspots are enriched for genes and surrounding features (with
about 130 coding bases per 10,000, see Table 6) compared with
our analysis of all 100-kb sliding windows covered by the Hap-
Map (which have about 115 coding bases per 10,000). This dif-
ference occurs because the average is calculated on a per-interval
basis, giving greater weight to regions with slightly higher marker
density and therefore more intervals defined by consecutive
markers.

Overall, we again observe a strong enrichment for GC
nucleotides (which constitute about 44% of hotspot sequences,
but only 40% of other intervals) and an increase in the rate of
sequence polymorphism within these intervals. Interestingly, al-
though the overall proportion of genic sequences appeared to
decrease in hotspots, we did not see a similar decrease in the

Sequence features and LD

Genome Research 1527
www.genome.org



proportion of exons and coding bases (in fact, the proportion of
coding bases and other bases in exons did not differ significantly
between hotspots and other intervals). In agreement with results
we observed for windows of the genome showing lower linkage
disequilibrium, hotspots were enriched for transcription factor
binding sites and sequences conserved across species, as well as
Alu repeats and simple repeats, but had fewer bases in repeats
overall and fewer bases in LINE repeats.

Multivariate analysis

The genomic sequence features examined here correlate not only
with linkage disequilibrium, but also with each other. For ex-
ample, genes and coding sequences are typically concentrated in
GC-rich regions of the genome. In order to build a parsimonious
model for the relationship between linkage disequilibrium and
genomic sequence features, we used the forward-selection model

Table 6. Sequence composition in hotspots for the rapid breakdown of linkage disequilibrium and other intervals

CEU sample YRI sample CHB+JPT sample

Hotspots Other intervals Hotspots Other intervals Hotspots Other intervals

Number of intervals 14,525 702,099 15,623 750,857 12,607 610,826
Basic sequence features

GC content 4379 4056 ** 4404 4052 ** 4395 4067 **
CpG islands 72 58 68 56 78 60 *
Polymorphism (�) 13.49 12.33 ** 13.68 12.15 ** 13.85 12.49 **

Genes and related features
Genic bases (exon, intron, UTR) 3608 3862 ** 3543 3835 ** 3787 3916
Coding bases 135 131 126 128 143 141
Exonic bases 273 248 255 240 295 261
Intronic bases 3385 3663 ** 3341 3643 ** 3556 3707 *
UTR (3� and 5�) 138 117 129 112 152 120 *

Other features
Bases in transcription factor binding sites 124 114 ** 122 113 * 128 115 **
Bases in transcribed fragmentsa 292 280 296 269 290 289
Predictions of conserved elements (phastCons) 579 532 ** 560 528 * 594 537 **
Identical base in alignment with M. musculus 3112 2889 ** 3141 2908 ** 3050 2874 **
Identical base in alignment with R. norvegicus 2999 2803 ** 3036 2823 ** 2957 2787 **
Conserved noncoding sequence 183 157 ** 180 157 ** 193 157 **

Repeat content
Total bases in repeats 3717 4113 ** 3732 4142 ** 3667 4086 **
Bases in LINE repeats 1237 1716 ** 1249 1741 ** 1224 1703 **
Bases in SINE repeats 1295 1161 ** 1281 1160 ** 1277 1155 **
Bases in LTR repeats 741 774 744 783 722 771 *
Bases in DNA repeats 287 303 294 304 289 302
Bases in simple repeats 93 79 ** 93 78 ** 92 80 *
Bases in low complexity repeats 57 56 56 56 56 56
Bases in satellite repeats 4 14 ** 7 10 2 12 **
Bases in other repeats 3 7 ** 5 7 3 7 **

aOnly applies to chromosomes 6, 7, 13, 14, 18, 19, 20, 21, 22, and X.
*Hotspots and other intervals differ significantly at P < 0.001 level.
**Hotspots and other intervals differ significantly at P < 0.000001 level.
Average sequence composition (per 10,000 bases) is presented for hotspots and control intervals.

Table 7. Relationship between hotspots for the rapid breakdown of linkage disequilibrium and chromosomal organization

CEU sample YRI sample CHB+JPT sample

Hotspots Other intervals Hotspots Other intervals Hotspots Other intervals

Number of intervals 14,525 702,099 15,623 750,857 12,607 610,826
Chromosome organization

Within 5 Mb of centromere 325 471 ** 324 460 ** 282 464 **
Within 10 Mb of centromere 965 1124 ** 942 1127 ** 933 1115 **
Within 15 Mb of centromere 1715 1804 1647 1816 ** 1685 1798 *
Within 5 Mb of telomere 795 352 ** 879 336 ** 766 347 **
Within 10 Mb of telomere 1642 773 ** 1793 746 ** 1635 765 **
Within 15 Mb of telomere 2219 1179 ** 2425 1138 ** 2273 1170 **
Within 5 Mb of heterochromatin 195 271 ** 202 273 ** 182 269 **
Within 10 Mb of heterochromatin 553 694 ** 575 700 ** 558 700 **
Within 15 Mb of heterochromatin 1057 1153 * 1041 1159 * 1077 1160
Large genomic duplications 85 137 ** 107 133 * 78 129 **
Large genomic duplications (cis) 41 81 ** 53 78 * 43 75 **
Large genomic duplications (trans) 47 67 * 62 65 40 62 *

*Hotspots and other intervals differ significantly at P < 0.001 level.
**Hotspots and other intervals differ significantly at P < 0.000001 level.
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building approach. First, we used quantile normalization to
transform observed linkage disequilibrium values and the
number of bases associated with each feature within a particular
genomic window into a normally distributed z-score. Quan-
tile normalization converts the percentile rank of a particu-
lar observation into a normally distributed variable and can be
used to convert a wide range of continuous distributions to nor-
mality.

All of the sequence features listed in Tables 1 and 2 were
considered as candidates for inclusion in a model predicting the
relative degree of linkage disequilibrium within each window of
the genome. Analyses were initially carried out in each popula-
tion and gave similar results. The results summarized in Table 8
refer to linkage disequilibrium values averaged across popula-
tions. For all of the window sizes examined, polymorphism, GC
content, and the total number of bases within repeats were the
features most strongly associated with local linkage disequilib-
rium levels. Whereas increasing sequence polymorphism and GC
content were associated with decreased linkage disequilibrium,
the total number of bases in repeats was associated with in-
creased linkage disequilibrium. Similar results were observed for
untransformed data (Supplemental Table 2), but the proportion
of variance explained was slightly lower—since the data are
noisier due to the presence of outliers both in the distribution of
linkage disequilibrium values and in the distribution of sequence
features across each window.

Interestingly, when these three features were included in the
model, the proportion of protein-coding base pairs was the next
most significant predictor of linkage disequilibrium and was as-
sociated with increased disequilibrium. Proximity to the centro-
meres was the final variable selected for inclusion in our models.
When the models were further refined to include six or more
variables, no single variable could explain more than 1.5% of the
remaining variance in disequilibrium values (whatever the win-
dow size). In Figure 5, variation in linkage disequilibrium along
chromosome 3 is compared with variation in the five selected
features (polymorphism, GC content, repeat content, proportion
of coding bases, and proximity to the centromeres). Note, for
example, that the region at ∼50 Mb that exhibits strong disequi-

librium in all populations also shows much reduced polymor-
phism (∼6 � 10�4 vs. ∼6 � 10�4 for the genome covered by
HapMap), very high GC content (∼50% vs. ∼40%), and a high
proportion of genic transcripts (∼7% vs. ∼1.2%).

When we repeated our analysis, excluding regions on the
X chromosome from consideration, results did not change sub-
stantially and the same set of five features was selected for all
window sizes (data not shown). When we excluded total repeat
content from the model fitting procedure, the proportion of
bases in LINEs and in simple repeats as well as the proportion of
identical bases in the alignment with the Mus musculus ge-
nome were selected into the model instead. Whereas the pro-
portion of bases in LINE elements was associated with in-
creased disequilibrium, simple repeats and sequences con-
served in the comparison with the M. musculus genome
were associated with reduced disequilibrium in this alternative
model.

Discussion
Across different populations we observe substantial agreement in
regions classified as having high or low linkage disequilibrium.
We were intrigued by the possibility that regional similarities in
linkage disequilibrium values across populations resulted not
only from a shared history between populations, but also because
phenomena that modulate linkage disequilibrium (such as re-
combination and mutation rates and natural selection) could be
influenced by local sequence features. Here, we provide a sum-
mary of the observed relationship between linkage disequilib-
rium and local sequence features.

At a very broad scale, we find that whereas centromeres are
associated with increased disequilibrium, telomeric regions of
chromosomes typically show little disequilibrium. In addition,
we observed more disequilibrium in the larger chromosomes
than in smaller chromosomes. These observations are compatible
with current recombination rate maps of the genome (Yu et al.
2001; Kong et al. 2002). Large genomic duplications are associ-
ated with higher linkage disequilibrium. Since recombination
events between duplicated regions are associated with human

Table 8. Results of model fitting to describe decay of linkage disequilibrium

Round of
selection Feature added to model

Variance
explained Fitted model

Models for extent of linkage disequilibrium within 100-kb windows

1 Polymorphism (�) 0.140 E(zLD) = �0.38 z�

2 GC 0.240 E(zLD) = �0.36 z� � 0.32 zGC
3 Total repeats 0.316 E(zLD) = �0.38 z� � 0.29 zGC + 0.28 zTotal repeats
4 Known gene codons 0.349 E(zLD) = �0.34 z� � 0.39 zGC + 0.30 zTotal repeats + 0.24 zcodons
5 Centromere (5 Mb) 0.364 E(zLD) = �0.34 z� � 0.39 zGC + 0.29 zTotal repeats + 0.24 zcodons + 0.27 zcentromere(5 Mb)

Models for extent of linkage disequilibrium within 500-kb windows

1 Polymorphism (�) 0.174 E(zLD) = �0.42 z�

2 Total repeats 0.327 E(zLD) = �0.44 z� + 0.39 zTotal repeats
3 GC 0.413 E(zLD) = �0.45 z� + 0.35 zTotal repeats � 0.30 zGC
4 Known gene codons 0.442 E(zLD) = �0.42 z� + 0.34 zTotal repeats � 0.45 zGC + 0.24 zcodons
5 Centromere (5 Mb) 0.462 E(zLD) = �0.41 z� + 0.32 zTotal repeats � 0.46 zGC + 0.25 zcodons + 0.30 zcentromere(5 Mb)

Models for extent of linkage disequilibrium within 1000-kb windows

1 Polymorphism (�) 0.168 E(zLD) = �0.42 z�

2 Total repeats 0.326 E(zLD) = �0.44 z� + 0.40 zTotal repeats
3 GC 0.433 E(zLD) = �0.47 z� + 0.36 zTotal repeats � 0.33 zGC
4 Known gene codons 0.457 E(zLD) = �0.44 z� + 0.34 zTotal repeats � 0.49 zGC + 0.23 zcodons
5 Centromere (5 Mb) 0.482 E(zLD) = �0.43 z� + 0.32 zTotal repeats � 0.50 zGC + 0.25 zcodons + 0.33 zcentromere(5 Mb)
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disease (Lupski 1998), the deleterious effects of these events
could favor low recombination rates for these regions, account-
ing for the high observed levels of linkage disequilibrium.

At a finer scale, we found that GC content and sequence
polymorphism were both strongly associated with the degree of
linkage disequilibrium. We observed this correlation both when
we divided the genome into windows of 100–1000 kb and also
when we compared sequence characteristics of “hotspots” for the
breakdown of linkage disequilibrium and other genomic regions.
GC content has previously been associated with recombination
rate and linkage disequilibrium (Eisenbarth et al. 2000; Yu et al.
2001), and the association could occur either because GC-rich
sequences are more prone to recombination or because recombi-
nation leads to mutation from A/T to G/C base pairings more
often than to mutations in the opposite direction (Huang et al.
2005). The association between sequence polymorphism and
linkage disequilibrium could occur because recombination
events are mutagenic, because regions of lower linkage disequi-
librium are likely to descend from a more distant ancestor so that
they have undergone more rounds of both mutation and recom-
bination, or even because some regions of strong disequilibrium
result from selective sweeps and show limited diversity (Hudson

1990; Nachman et al. 1998). A correlation between recombina-
tion rates and nucleotide diversity has also been reported in Dro-
sophila (Begun and Aquadro 1992).

We observed that repeat content is strongly associated with
increasing levels of linkage disequilibrium. Interestingly, the di-
rection and strength of association was not uniform for different
repeat types. Whereas LINE elements were associated with in-
creased levels of disequilibrium, SINE elements (mainly Alus)
were associated with decreased levels of disequilibrium. One pos-
sibility for the low levels of disequilibrium associated with SINEs
is that these elements contain sequences that promote recombi-
nation, a possibility that is compatible with the observation of a
relatively high rate of recombination events between SINE ele-
ments in the genome (Prak and Kazazian Jr. 2000; Deininger and
Batzer 2002). The mechanism through which LINEs are associ-
ated with increased disequilibrium is less clear—one possibility is
that they might displace functional sequences that are typically
associated with increased recombination and another possibility
is that, when in a polymorphic state, LINE insertions actually
inhibit recombination.

Intriguingly, we found that over short distances (genomic
windows of 100 kb), genes were associated with slightly increased
levels of linkage disequilibrium, but over longer distances (500-
or 1000-kb windows), they were associated with decreased levels
of linkage disequilibrium. The Hill-Robertson effect (Hill and
Robertson 1966), which postulates that increased recombination
between genes is advantageous because it allows natural selection
to focus on individual alleles, provides an attractive explanation
for this discrepancy. In this manner, when natural selection in-
creases linkage disequilibrium around a particular allele, the in-
creased disequilibrium will be rapidly eroded by the high-
recombination rates surrounding genes and will not extend far.

We compared the proportion of genes in different quartiles
of the genome defined according to the degree of linkage dis-
equilibrium they exhibit. Our results show that both the ge-
nomic quartile with the strongest linkage disequilibrium and the
genomic quartile with the weakest linkage disequilibrium have a
greater density of genes and coding bases than the rest of the
genome. Comparison of linkage disequilibrium data with func-
tional annotation from the Gene Ontology database (Ashburner
et al. 2000), showed that whereas some types of genes (including
those involved in immune response and sensory perception)
are preferentially located in regions of weak linkage disequi-
librium, other types of genes (including those involved in DNA
and RNA metabolism, response to DNA damage, and in the cell
cycle) are more often located in regions of weak linkage disequi-
librium.

We speculate that it is advantageous for some genes to be
located in regions of weak linkage disequilibrium, where greater
allelic diversity exists (possibly generated through increased re-
combination and/or mutation rates). Immune system genes
naturally fall into this category, since greater diversity reduces
the chance that a single pathogen might sweep through the
population (Little and Parham 1999; Trachtenberg et al. 2003).
For other genes, especially those involved in fundamental bio-
logical processes that evolve very slowly, such as DNA repair
(Modrich and Lahue 1996) or DNA packaging (Pehrson and Fuji
1998), allelic diversity could even be a disadvantage, since it
might disrupt finely tuned processes. This observation suggests
an evolutionary justification for the diversity in the extent of
linkage disequilibrium in the genome—it is possible that the ge-
nome is organized to allow greater diversity in some genes and

Figure 5. Variation of fitted linkage disequilibrium values (for markers
separated by 30,000 bp) across the three groups of samples and of
selected sequence features including sequence polymorphism, total re-
peat content, GC content, proportion of coding bases, and proximity to
the centromeres. Results refer to 1000-kb windows across chromo-
some 3.
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greater conservation in others depending on gene function, so as
to provide the greatest possible advantage to the organism.

The scale of the data generated by the International Hap-
Map Project leads us to select computationally efficient analysis
methods that could be efficiently applied on a genome-wide
scale. Coalescent-based approaches for estimating local recombi-
nation rates (Hudson 2001) and identifying recombination
hotspots (Li and Stephens 2003; McVean et al. 2004) provide
interesting, but more computationally intensive alternatives. Us-
ing the ENCODE data generated by the HapMap project, we com-
pared recombination rate estimates (McVean et al. 2004) in re-
gions we identified as “hotspots” for the decay of disequilibrium
with estimates for the rest of the genome. The “hotspots” we
identified exhibited recombination rates that were 10–20�

higher than background levels. Overall, we expect that our re-
sults and conclusions reflect biological underpinnings and will
be replicated using different analytical strategies.

Methods

Data set
All of our analyses are based on release 16c (June 2005) of the
genotype data generated by the International HapMap Consor-
tium (2003). Genotypes for all 22 autosomes and the X chromo-
some were downloaded from the HapMap Project Web site
(http://hapmap.cshl.org/). We downloaded the nonredundant
QC-filtered genotype set, which included genotypes for
1,105,003 markers in 30 CEPH trios from Utah (CEU sample, 120
independent founder chromosomes), 1,076,387 markers in 30
Yoruba trios from Ibadan, Nigeria (YRI sample, 120 independent
founder chromosomes), and 1,087,321 markers in 45 unrelated
Chinese individuals from Beijing and 44 unrelated Japanese in-
dividuals from Tokyo (CHB+JPT sample, 178 independent
founder chromosomes).

Calculation of marker allele frequencies
Marker allele frequencies were estimated by maximum likelihood
using a rapid implementation of the E-M algorithm that accom-
modates both family data and unrelated individuals (Abecasis
and Wigginton 2005). The algorithm accommodates X chromo-
some data appropriately by modeling males as hemizygous.
Within each sample, only markers with estimated minor allele
frequencies �5% were retained for subsequent analyses, resulting
in a total of 774,921 markers analyzed in the CEU sample,
814,615 markers analyzed in the YRI sample, and 702,895 mark-
ers analyzed in the CHB+JPT sample.

Calculation of pairwise disequilibrium coefficients
Haplotype frequencies for all pairs of SNPs separated by
<1,000,000 bp were estimated by maximum likelihood using the
same rapid implementation of the E-M algorithm for family data
(Abecasis and Wigginton 2005). As usual, pairwise disequilibrium
was summarized using the r2 measure, which was calculated us-
ing estimated haplotype frequencies. In total, we calculated pair-
wise disequilibrium coefficients for 229,624,668 marker pairs in
the CEU sample, 253,755,566 marker pairs in the YRI sample,
and 191,677,546 marker pairs in the CHB+JPT sample.

Sliding window analyses of linkage disequilibrium
Within each population, we carried out sliding window analyses
of the decay of linkage disequilibrium. These analyses were re-

peated with three different sliding window sizes (100,000,
500,000, and 1,000,000 bp). For each window size, we divided
the genome into overlapping windows (50% overlap between
consecutive windows) and estimated a curve describing the
decay of r2 within each window of the form E(r2

ij) = 1/(1 + Rij)
(Ohta and Kimura 1969). Within each window, we assumed that
the population recombination rate Rij between any two SNPs i
and j, which is a function of the effective population size and the
recombination rate between SNPs, was proportional to the base-
pair distance dij between the pair of SNPs. Specifically, we used a
least-squares approach to estimate a single parameter corre-
sponding to the per base-pair population recombination rate
(4N�) and defined Rij = 4N� * dij. In this simple model, the effec-
tive population size, N, and per base-pair recombination rate, �,
are not estimated separately, but rather, their product is esti-
mated as a single parameter.

Identification of hotspots for the breakdown of
linkage disequilibrium
Recombination events can cluster within precisely localized re-
combination hotspots (Jeffreys et al. 2001), and regions of rapid
breakdown of linkage disequilibrium can be used to localize these
hotspots without direct measurement of recombination rates
(McVean et al. 2004). To identify regions of rapid breakdown of
linkage disequilibrium, we systematically evaluated intervals de-
fined by pairs of consecutive markers separated by <10,000 bp.
For each interval, we considered the two flanking and five
equally spaced flanking markers spanning 40 kb on either side of
the interval (for a total of 12 markers) and calculated the maxi-
mum spanning r2 coefficient by considering all 36 pairings of
flanking markers. Intervals without six genotyped markers
within the flanking 40 kb on either side were deemed to be in-
adequately covered and were excluded from this analysis. Inter-
vals were grouped in 100-bp bins with other intervals of similar
size (e.g., intervals of 9900–10,000 in one bin, intervals of 9800–
9900 bp in another bin, etc.). Intervals that were adequately cov-
ered were classified as regions of rapid breakdown of linkage dis-
equilibrium, and therefore, potential recombination hotspots
whenever the maximum spanning r2 statistic was in the bottom
2% of statistics for that bin.

Comparison with fine-scale recombination rate estimates
Fine-scale recombination rate estimates for the ENCODE regions
were calculated by Gil McVean and Colin Freeman (Oxford Uni-
versity) using the reversible-jump Markov chain Monte Carlo
method (McVean et al. 2004). Brief details of their analysis fol-
low. The MCMC approach explores the posterior distribution of
fine-scale recombination rate profiles, sampling the distribution
of both the number and location of change-points in fine-scale
recombination rates, and is implemented in the package LDhat.
A block-penalty of 5 was used (calibrated by simulation and com-
parison to data from sperm-typing studies). Each region was ana-
lyzed as a single run with 10,000,000 iterations, sampling every
5000th iteration and discarding the first third of all samples as
burn-in. Estimates were generated separately from each of the
four ENCODE resequencing populations and then combined to
give a single figure. Differences between populations did not ap-
pear to be significant.

Analysis of sequence features
For the genomic features, binned counts were made from tracks
available in the UCSC Genome Browser or from tables in the
UCSC Table Browser (Kent et al. 2002; Karolchik et al. 2004),
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or were based directly on the reference sequence for the July
2003 human assembly (NCBI Build 34, UCSC hg16). Bins
were defined along the full length of each chromosome includ-
ing gaps with widths of 100, 500, or 1000 kb and overlap of 50%
between consecutive bins. The featureBits program (publicly
available in the UCSC source tree) was used to uniquely count
each position in the bin that is covered in the given track/table;
positions that are covered by multiple elements were counted
only once.

The locations of genes, exons, introns, and UTRs were ob-
tained from the knownGenes table at the UCSC Table Browser
(http://genome.ucsc.edu/cgi-bin/hgTables). When there was evi-
dence for alternative splicing, we used a broad definition for ex-
ons and other genic features. For example, a base was considered
protein coding if it was covered by a coding-sequence (CDS) exon
for at least one transcript. The gene counts were derived from a
featureBits reduction of this same table; the strict counts are the
sum of the fraction of each gene that is found in the bin, while
the loose gene counts are the number of partial or total gene
overlaps for each gene in the bin. Assignments of individual
bases to repeats are from featureBits reductions of the rmsk table
(originally generated using the RepeatMasker program, http://
www.repeatmasker.org) either whole or subsets by the repClass
field. Similarly, gaps with and without additional padding are
from the gap table and filtered by type. CpG islands were re-
trieved from the cpgIsland table, transcription factor binding
sites are from the tfbsCons table, transcribed fragments are from
the affyTransfrags table, genomic duplications are from the ge-
nomicSuperDups table, and conserved elements are from the
phastConsElements table in the hg17 assembly and lifted to
hg16 before featureBits reduction (Siepel et al. 2005). The con-
served noncoding sequences (cns table) are a subset of phastCons
elements with known coding sequences removed (in this case, all
coding sequences from NCBI refSeq genes, UCSC knownGenes,
and ENSEMBL genes). GC content was calculated with the hgGc-
Percent program on the hg16 assembly. Identity with other spe-
cies is the number of nucleotides that align identically between
the human and mouse (mm3) or rat (rn3) genomes in a multiz
alignment (Blanchette et al. 2004).

Estimates of sequence polymorphism
Estimates of sequence polymorphism, or the per base-pair
nucleotide diversity, were calculated using a previously described
algorithm (Sachidanandam et al. 2001) by Jim Mullikin (NHGRI)
for 5-kb windows throughout the genome. The algorithm
(Sachidanandam et al. 2001) aligns publicly available sequence
traces to the human genome sequence and uses the proportion of
heterozygous bases in regions of high-quality sequence to esti-
mate sequence polymorphism. The quantity � represents the
likelihood that a single nucleotide will be heterozygous when
compared between two randomly sampled chromosomes. This
quantity is generally small, and for ease of comparison, in all
instances where � is tabulated, we have multiplied it by 10,000.

Comparison of linkage disequilibrium and sequence features
within sliding windows
We correlated linkage disequilibrium, sequence polymorphism,
number of genes, and the number of bases assigned to each ge-
nomic feature in two ways. First, we calculated the Spearman
rank correlation coefficient between linkage disequilibrium and
each of the other characters. Second, we sorted all bins according
to the estimated degree of linkage disequilibrium within the bin
and separated bins into four quartiles (0%–25% of all bins ac-
cording to estimated disequilibrium, 25%–50% of all bins, etc.).

Then, we calculated the summary distribution of each feature for
each group of bins.

Comparison of linkage disequilibrium and sequence features
within hotspots
To compare the sequence composition of intervals identified as
regions where linkage disequilibrium broke down rapidly with
the sequence of other genomic intervals we evaluated, we first
“standardized” summary descriptions for all intervals to obtain
the proportion of bases in the interval assigned to each feature.
We then used a simple t-test (with unequal variances) to compare
the average sequence composition of hotspots and other inter-
vals. For ease of presentation, the proportion of bases assigned to
each feature was multiplied by 10,000 for presentation in Tables
5 and 6.

Analysis of gene ontology data
To examine the relationship between gene categories and linkage
disequilibrium, classification terms at a depth of four levels from
the origin of the “Biological Function” hierarchy were selected
from the Gene Ontology (GO) controlled vocabulary (Ashburner
et al. 2000; Harris et al. 2004). From each term, all matching
genes in the GO database (seqdblite, June 2005 release) were
selected. The seqdblite database includes all GO assignments ex-
cept those that are based only on “inferred from electronic an-
notation”, which is less reliable (Harris et al. 2004). The SWISS-
PROT IDs assigned to each gene were matched to UCSC known
genes, and the transcription start and stop position were deter-
mined against the July 2003 human genome assembly (NCBI
build 34; UCSC hg16).

After averaging fitted disequilibrium coefficients across
populations, windows in the genome were organized into four
quartiles as follows: a quartile with the 25% highest disequilib-
rium coefficients, a quartile with the 25% smallest disequilibrium
coefficients, and two intermediate quartiles. Genes were classi-
fied as being in a region of strong disequilibrium if they over-
lapped a window in the top quartile of the genome. Genes were
classified as being in a region of weak disequilibrium if they over-
lapped a window in the bottom quartile of the genome. Genes
were left unclassified if they did not overlap a window in the two
extreme quartiles or if they overlapped windows in both quar-
tiles.

Multivariate analysis
In order to build a parsimonious model for the relationship be-
tween linkage disequilibrium and genomic sequence features, we
used the forward-selection model building approach. First, we
used quantile normalization to transform observed linkage dis-
equilibrium values and the number of bases associated with each
feature within a particular genomic window into a normally dis-
tributed z-score. Specifically, we calculated a rank for each ob-
served statistic and then replaced the statistic with the value ��1

(rank/no. of windows), where ��1 denotes the inverse of the
standard normal distribution. Quantile normalization ensures
that our analysis is robust to outliers and should not induce any
artificial (i.e., nonbiological) correlations.

For model selection, we first evaluated all regression models
with the extent of linkage disequilibrium as the dependent vari-
able, including a single predictor as an independent variable. We
then selected the predictor that resulted in the best model fit
(smallest residual sum-of-squares) into the model. In a second
round, we evaluated all models, including the predictor selected
in the first round and one additional predictor. In the third

Smith et al.

1532 Genome Research
www.genome.org



round, we evaluated models with three predictors, including the
two predictors from the second round, and so on.
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