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Molecular Dissection of Psoriasis: Integrating Genetics and

Biology

James T. Elder'?, Allen T. Bruce'*, Johann E. Gudjonsson“, Andrew Johnston'#, Philip E. Stuart',
Trilokraj Tejasvi', John J. Voorhees', Gongalo R. Abecasis® and Rajan P. Nair'

Psoriasis is a common and debilitating disease of the
skin, nails, and joints, with an acknowledged but
complex genetic basis. Early genome-wide linkage
studies of psoriasis focused on segregation of micro-
satellite markers in families; however, the only locus
consistently identified resided in the major histocom-
patibility complex. Subsequently, several groups
mapped this locus to the vicinity of HLA-C, and two
groups have reported HLA-Cwé itself to be the major
susceptibility allele. More recently, the development of
millions of single-nucleotide polymorphisms, coupled
with the development of high-throughput genotyping
platforms and a comprehensive map of human haplo-
types, has made possible a genome-wide association
approach using cases and controls rather than families.
Taking advantage of these developments, we partici-
pated in a collaborative genome-wide association study
of psoriasis involving thousands of cases and controls.
Initial analysis of these data revealed and/or confirmed
association between psoriasis and seven genetic loci—
HLA-C, IL12B, IL23R, [IL23A, IL4/IL13, TNFAIP3, and
TNIPT1—and ongoing studies are revealing additional
loci. Here, we review the epidemiology, immunopathol-
ogy, and genetics of psoriasis, and present a disease
model integrating its genetics and immunology.
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EPIDEMIOLOGY OF PSORIASIS: AN OVERVIEW

Psoriasis is a common disease, affecting about 2% of
Americans at a cost of over 3 billion dollars a year (Sander
et al., 1993). Psoriasis has a major impact on the quality of
life (Gupta et al., 1993; Choi and Koo, 2003), leading
psoriatics to report a reduction in physical and mental
functioning comparable with that seen in cancer, arthritis,
hypertension, heart disease, diabetes, and depression (Rapp
et al., 1999). More than 150,000 new diagnoses of psoriasis
are made each year in the United States. Most of these are
made in persons under 30 years of age, with more than
10,000 being less than 10 years old (Krueger et al., 1984). A
total of 10-40% of psoriatics develop psoriatic arthritis (PsA),
which is severe and deforming in about 5% of patients
(Gladman, 1994; Gelfand et al., 2005).

The clinical and genetic epidemiology of psoriasis and PsA
has been reviewed previously, and will be considered only
briefly here (Elder et al., 1994; Rahman and Elder, 2005;
Gudjonsson and Elder, 2007b). Disease onset is most
commonly observed in the early twenties. It has been
proposed that two forms of psoriasis can be recognized (type
I and type II), with type | psoriasis, characterized by onset age
<40 vyears, being more likely to be familial, severe, and
strongly associated with HLA-Cw6 (Henseler and Christophers,
1985; Stuart et al., 2002). The prevalence of psoriasis is
approximately the same in males and females, though PsA
has been suggested to be preferentially transmitted from male
parents (Rahman et al., 1999; Karason et al., 2003).

Substantial genetic epidemiological data, including stu-
dies of twins, pedigrees, and relatives of unrelated index
patients suggest that psoriasis is multifactorial, that is,
influenced by multiple genes as well as environmental factors
including stress, trauma, and infections, notably Streptococ-
cal pharyngitis (Lomholt, 1963; Watson et al., 1972;
Gudjonsson and Elder, 2007a). Genetic epidemiological
studies of PsA indicate that this disorder is even more
strongly influenced by genes than is cutaneous psoriasis (Moll
et al., 1973; Chandran et al., 2007a).

Several different forms of cutaneous psoriasis can be
observed in the same person, either simultaneously or over
time. These include chronic plaque, guttate, inverse, sebor-
rheic, and localized and generalized pustular psoriasis, as
well as palmoplantar pustulosis. Of these, chronic plaque
disease is the most common. Guttate psoriasis is character-
ized by the rapid and generalized development of many
small papules, which resolve spontaneously in about half the
cases, and progress to chronic plaque psoriasis in the rest.
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Psoriatic arthritis typically presents between the ages of 35
and 45 vyears, usually but not always after onset of skin
disease (Gladman et al., 1987). The Moll and Wright
classification of PsA has been widely used (Moll and Wright,
1973). They defined PsA as a rheumatoid factor-negative
inflammatory arthritis involving (a) distal interphalangeal
predominant arthritis of hands and feet, (b) symmetric
polyarthritis, (c) symmetric oligoarticular arthritis, (d) pre-
dominant axial spondylitis, and/or (e) arthritis mutilans. As
seen for cutaneous psoriasis, the clinical manifestations of
PsA can change considerably over time in any given patient
(Jones et al., 1994; Marsal et al., 1999). More recently, the
CASPAR (ClASsification criteria for Psoriatic ARthritis) criteria
have emerged as a sensitive, specific, and reproducible tool
for making a diagnosis of PsA (Taylor et al., 2006). These
criteria are based on both genetic and clinical features, and
define PsA as the presence of inflammatory articular disease
with at least 3 points from the following items: current
psoriasis (2 points), a personal history of psoriasis (1 point,
unless current psoriasis is present), a family history of
psoriasis (1 point, unless current psoriasis was present or
there was a personal history of psoriasis), dactylitis, juxta-
articular new bone formation, rheumatoid factor negativity,
and nail dystrophy (1 point each). These criteria have been
shown to be sensitive and specific, not only in the original
study (Taylor et al., 2006) but also in early arthritis clinic, in
early PsA clinic, and in family medicine clinics (Taylor et al.,
2006; Chandran et al., 2007b). The presence of enthesitis
(inflammation of ligament, tendon, and capsular insertions
into bone) has been proposed as a unifying factor in the
pathogenesis of PsA (McGonagle et al., 1999).

Approximately half of psoriasis patients develop nail
changes, including pitting, “/oil drop’” spotting, and onycho-
dystrophy. Nail changes are strongly associated with PsA
(Wright, 1959; Baker et al,, 1964; Eastmond and Wright,
1979; Gladman et al., 1986; Lavaroni et al., 1994;
Williamson et al., 2004), possibly because of the close
proximity of the nail folds to the “entheseal unit’” of the distal
interphalangeal joint region (Tan et al., 2007).

IMMUNOPATHOGENESIS OF PSORIASIS

In pathophysiological terms, psoriasis is characterized by
markedly increased epidermal growth and altered differentia-
tion, many biochemical, immunological, inflammatory, and
vascular abnormalities, and a poorly understood relationship
to nervous system function (Gudjonsson and Elder, 2007a).
There is a large body of literature on the immunopathogen-
esis of psoriasis, which has been comprehensively reviewed
recently (Lowes et al.,, 2007; Nickoloff et al., 2007). Many
observations suggest that psoriasis is a T-cell-mediated
disease driven at least in part by a positive feedback loop
from activated T cells to antigen-presenting cells (APCs) that
is mediated by IFN-y, IL-1, and tumor necrosis factor-o
(TNF-o). Moreover, there are important contributions of
innate immune mechanisms involving the epidermis and
macrophages (Buchau and Gallo, 2007). In psoriatic lesions,
there is a distinct compartmentalization of T cells between
the anatomic layers of the skin: CD4+ T cells are found
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predominantly in the upper dermis, whereas CD8 + T cells
mostly localize to the epidermis (Baker et al., 1984). The
functional importance of T cells is emphasized by the high
therapeutic efficacy of cyclosporine A, a T-cell-selective
immunosuppressant (Ellis et al., 1986), as well as other T-cell-
selective immunomodulators, including anti-CD4 antibodies
(Prinz et al., 1991), CTLA4Ig (Abrams et al., 2000), alefacept
(Sugiyama et al., 1993), and DAB389IL-2 (Gottlieb et al.,
1995). The role of hematopoietic cells in psoriasis is further
highlighted by cases of psoriasis caused by or cured by bone
marrow transplants, depending on whether the donor or
recipient had psoriasis (Gardembas-Pain et al., 1990;
Kanamori et al., 2002). Biologics that block TNF-a are also
highly effective, reflecting important roles for this multi-
functional cytokine in antigen (Ag) presentation, macrophage
activation, and leukocyte trafficking (for review, see
Gudjonsson and Elder, 2007a).

The recent discovery of a new subset of human T cells
expressing IL-17 (Steinman, 2007) has led to the suggestion
that these cells have a major role in psoriasis (Lowes et al.,
2008) as well as other autoimmune epithelial disorders such
as Crohn’s disease (Neurath, 2007). Although the mechan-
isms involved in the differentiation of IL-17-expressing T cells
from naive precursors remain controversial (Steinman, 2007),
it is clear that the expansion and survival of these cells are
driven by IL-23, largely produced by dendritic APC acting on
the IL-23 receptor on T cells. We recently showed that [FN-y
causes myeloid APC to produce IL-1 and IL-23 and thereby
stimulate the expansion of IL-17+ T cells (Kryczek et al.,
2008) (Figure 1). In this study, we also found a marked
expansion of CD8+ T cells expressing IL-17 in psoriatic
epidermis. Nearly all of the epidermal IL-17-producing T
cells were CD8 +, whereas such cells were essentially absent
from normal epidermis (Kryczek et al., 2008). More recently,
we and others (Nograles et al,, 2009) have made similar
observations for I1L-22. Unlike mouse T cells, in which IL-17
and IL-22 are typically co-expressed, we found little overlap
between T cells expressing IL-17 and those expressing 1L-22
in normal or psoriatic skin (Rubin et al., 2009). As we will
discuss in more detail later, these intriguing cells form an
important link in the chain connecting the genetics and
immunology of psoriasis.

Another key link in this chain is provided by an elegant
series of experiments by Nestle and colleagues, making use of
a xenograft model in which nonlesional psoriatic skin is
grafted onto highly immunocompromised AGR mice. In this
model, local activation of human immunity occurs within the
graft, possibly as a result of the trauma of grafting. Using this
model, they initially showed that local proliferation of human
T cells within the grafted skin itself, rather than trafficking of
circulating immunocytes into the skin, is sufficient for the
development of psoriasis (Boyman et al., 2004). These studies
also established a strong correlation between the presence of
epidermal T cells and the development of epidermal
hyperplasia (Boyman et al, 2004). In subsequent experi-
ments, they used a mAb against very late activation Ag-1
(@1B1 integrin), which is required for T-cell interaction
with the epidermal basement membrane and subsequent
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Figure 1. Proposed mechanism for Th1-mediated support of IL-17-producing
T cells. Th1 cells produce IFN-y, which stimulates myeloid antigen-presenting
cells (APCs) to secrete 1L-23. Together with IL-1, IL-23 promotes the survival
and expansion of CD4+ and CD8+ T cells expressing IL-17. (The same
mechanism expands to a largely non-overlapping population of T cells
expressing IL-22, not shown). The entry of IL-17- and IL-22-producing CD8 +
T cells into the epidermis promotes epidermal hyperplasia and an innate
keratinocyte defense response involving proteins such as human p-defensin 2
(HBD-2), which are highly overexpressed in psoriasis. Obtained with
permission from Kryczek et al., 2008.

emigration of T cells into the epidermis, to ask whether this
emigration was necessary for lesion development. Indeed,
antibody treatment blocked accumulation of T cells within
the epidermis, and this blockade inhibited psoriatic lesion
development to the same extent as observed after neutraliza-
tion of TNF-a.. The anti-very late activation Ag antibodies
were less effective, however, when some T cells were already
present in the grafted epidermis, and were ineffective when
fully-developed psoriatic lesions were grafted (Conrad et al.,
2007). These studies are highly relevant to the genetics of
psoriasis, because most epidermal T cells are CD8 + and are
therefore likely to respond to Ags presented in the context of
major histocompatibility complex (MHC) Class | molecules,
such as HLA-Cwo6. Consistent with this notion, many of the
clonally expanded epidermal T cells in chronic psoriatic
plaques are CD8 + (Chang et al., 1994).

GENETIC LINKAGE STUDIES OF PSORIASIS

Psoriasis is one of the most common and most heritable of the
common diseases that display familial aggregation (Vyse and
Todd, 1996). The epidemiological rationale for considering
psoriasis to be a multifactorial (polygenic and environmen-
tally influenced) genodermatosis was discussed earlier.
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However, these studies did not identify the specific genes
involved. In 1990, Risch showed that polygenic disorders
could be studied for allele sharing in a practical number
(hundreds) of chosen families, as long as 4; (the overall
excess risk of disease in a first-degree relative of an affected
person) was at least 4, and as long as at least one of these loci
was of major effect (that is, as long as the excess risk was not
more or less evenly divided between hundreds of genes)
(Risch, 1990). As 24 has been estimated to be in the range of
3-6 (Elder et al., 1994) and as high as 10 for juvenile-onset
psoriasis (Elder et al., 2001), and with the emergence of
microsatellites as practical genetic markers, in the 1990s,
several groups embarked on a search for genetic determinants
of psoriasis (Matthews et al.,, 1996; Nair et al, 1997;
Trembath et al, 1997; Samuelsson et al., 1999; Capon
et al., 1999b; Karason et al., 2000; Lee et al., 2000; Fischer,
2001; Lesueur et al., 2007). These studies relied on genetic
linkage techniques (that is, either consistent co-segregation of
a particular genetic marker with disease or sharing of alleles
in affected sibling pairs). However, with the exception of the
psoriasis  susceptibility-1 (PSORST) locus, these studies
yielded no consistent evidence for linkage to specific non-
MHC loci that could be robustly replicated (reviewed in
Capon et al., 2004). The same problem has been encountered
in a variety of other complex genetic disorders (Altmuller
etal., 2001). We now appreciate that this was due to the high
population frequency of disease alleles in many complex
genetic disorders (Risch and Merikangas, 1996).

PSORIASIS GENETICS AND THE MHC

Human leukocyte antigen associations with psoriasis have
been known for over 35 years (Russell et al., 1972), and
earlier studies had localized the disease determinant to the
Class I end of the MHC (Schmitt-Egenolf et al., 1996; Jenisch
et al, 1998). More recently, several groups reached the
conclusion that PSORST was in the vicinity of HLA-C, but
other nearby genes could not be excluded (for review, see
Capon et al., 2004). Despite the somewhat disappointing
results of genome-wide linkage studies, the many psoriasis
families we and others chose proved to be very useful for
detailed mapping of PSORS1. As the defined genetic
relationships between family members make it possible to
determine the phases of the microsatellite genotypes (that is,
to determine which marker alleles were on which chromo-
some), it is possible to infer recombinant ancestral haplotypes
(that is, to infer meiotic crossover events that occurred many
generations ago). We initially carried out an analysis of MHC
haplotypes using 62 microsatellite markers (Nair et al., 2000),
which mapped PSORST to the proximal MHC Class | region
in the vicinity of HLA-C, and similar results were reported
by Trembath and colleagues (Veal et al, 2002). In 2006,
we reported a more detailed recombinant ancestral haplo-
type mapping of the region in 678 families, along with
DNA sequencing of the critical interval in two disease and
five normal chromosomes. This analysis strongly implicated
HLA-C rather than any of the 10 other nearby genes, and
identified HLA-Cw6 as very likely to be the disease allele at
PSORST (Nair et al., 2006). Our conclusions were recently
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confirmed by a large study of Han Chinese psoriatics, many
of whom do not carry the same extended haplotypes found in
psoriatics of Northern European descent (Fan et al., 2008).

GENOME-WIDE ASSOCIATION STUDIES OF PSORIASIS
Unlike many Mendelian disorders in which the disease
alleles are rare and of catastrophic effect, the alleles
underlying complex genetic disorders are relatively common
and make only modest individual contributions to disease
risk, rendering them difficult to identify by linkage (Botstein
and Risch, 2003). In this setting, tests of association are much
more powerful than tests of linkage, provided causal variants
or proxies for them can be genotyped (Risch and Merikangas,
1996). However, in contrast to linkage studies, association
studies require at least 100,000 genetic markers to compre-
hensively survey the genome (Kruglyak, 1999; International
HapMap Consortium, 2003). For this reason, genome-wide
association studies (GWAS) were not feasible in the 1990s,
and genetic association studies were limited to candidate
genes or regions. In this decade, however, the HapMap has
provided millions of genetic markers in the form of single-
nucleotide polymorphisms (SNPs) (Altshuler et al., 2005).
Concurrently, technologies were developed for high-through-
put genotyping, allowing 100,000-1,000,000 SNPs to be
typed in thousands of individuals at a reasonable cost.
Anticipating these developments, we decided to focus our
collection efforts on unrelated cases and controls, instead of
families. This made it much easier to enroll subjects through
dermatology clinics, allowing a rapid increase in sample size.
In 2006, we initiated a multicenter collaboration with Dr
Anne Bowcock at the Washington University of St Louis and
Dr Gerald Krueger of the University of Utah to carry out a
GWAS of psoriasis, which we named the Collaborative
Association Study of Psoriasis (CASP). Our initial results were
published recently (Nair et al., 2009b).

After quality control filtering of the data, we analyzed
438,670 SNPs typed for 1,359 cases and 1,400 controls. As
shown in Figure 2, the discovery GWAS revealed strong
associations not only at the established susceptibility loci
HLA-C, IL12B, and IL23R (Tsunemi et al., 2002; Capon et al.,
2007; Cargill et al., 2007; Nair et al., 2008b) but also showed
promising association signals that fell short of genome-wide
significance at numerous other loci. With additional collea-
gues from Canada, Germany, and France, we carried out a
replication analysis of the GWAS results, genotyping 21 SNPs
representing 19 independent loci in 6 independent samples
of European origin, numbering 5,048 cases and 5,051
controls. We confirmed association at seven loci (with
P<107? in the replication study and P<5x 10™° overall).
In addition to the three loci previously associated with
psoriasis, namely, HLA-C, IL12B, and IL23R, we identified
novel genetic signals located near four plausible psoriasis
candidate genes: IL23A, IL4/IL13, TNFAIP3, and TNIPI.
These will be discussed in more detail below.

Four other GWAS of psoriasis have been reported (Cargill
et al., 2007; Capon et al., 2008; Liu et al., 2008; Zhang et al.,
2009). All of them detected strong associations in the vicinity
of HLA-Cwé6, and additional signals in genes whose products
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are components of the IL-23 ligand-receptor complex. One of
them detected a very strong association to the vicinity of the
late cornified envelope (LCE) genes located in the epidermal
differentiation complex (Zhang et al., 2009). This finding was
simultaneously reported in a study focusing on copy number
variation in psoriasis, which showed that increased risk of
psoriasis is associated with deletion of the LCE3B and LCE3C
genes (de Cid et al., 2009). This interesting family of genes,
which we initially identified in 1997 by positional cloning
(Zhao and Elder, 1997), is involved in the terminal stages of
epidermal maturation (Jackson et al., 2005). Although LCE3B
and LCE3C are not expressed in normal skin, they are highly
expressed in psoriasis and after epidermal injury produced by
tape stripping (de Cid et al., 2009). Another locus identified in
one of these GWAS maps to chromosome 20q13 near the
ZNF313 gene. ZNF313 is strongly expressed in the skin and,
similar to TNFAIP3 and TNIP1 (see below), encodes a
ubiquitin ligase (Capon et al., 2008). Recently, we were able
to confirm this association in a sample of 2,140 cases and
1,922 controls (OR=1.19, P=8.9x107°) (Nair et al.,
2008a). Other genetic signals for which replication has been
claimed include SNPs in the vicinity of PTPN22 other than
the R620W mutation known to increase risk in several other
autoimmune diseases (Chung and Criswell, 2007), and
several SNPs in the CDKALT region. We find confirmatory
associations with SNPs in the CDKALT region in the CASP
primary GWAS data set (P=0.0001), but not with SNPs in the
PTPN22 region (data not shown).

An interesting feature of the GWAS results obtained thus
far in psoriasis and other complex genetic disorders is that the
risk allele is often the most common allele in the population.
There are several possible explanations for this. The disease
allele may be ancestral, as is the case for lactose intolerance.
Alternatively, the “‘disease’’ allele may be beneficial in
certain contexts (that is, defense against pathogens), as is the
case for hemoglobinopathies increasing resistance to malaria,
or at least be selectively neutral with respect to reproduction.
It is also possible that the rare variant may actually encode a
protective function. Finally, the actual functional variant may
be rare, but carried on a common haplotype tagged by the
observed variant. Fine mapping and functional studies of
disease-associated variants are in their early stages in
psoriasis and in many other complex genetic disorders. With
time, the outcome of these studies should allow us to
distinguish between these possibilities.

INTEGRATING THE GENETICS AND IMMUNOLOGY OF
PSORIASIS

With the likely exception of HLA-Cwé6 (Nair et al., 2006), the
disease-predisposing variants responsible for the genetic
signals we and others have observed in psoriasis remain to
be identified. Nevertheless, our results suggest roles for
several key immunological pathways in disease susceptibil-
ity. Here, we present a model integrating the genetics and
immunology of psoriasis emphasizing the functional relation-
ships between the genetic loci that have been implicated to
date. Some aspects of this model have been presented
previously (Elder, 2009; Nair et al., 2009a).
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Figure 2. Results of the discovery phase of the Collaborative Association Study of Psoriasis genome-wide association study. The upper panel

is a “‘Manhattan plot” summarizing the association results obtained for 438,670 genotyped single-nucleotide polymorphisms (SNPs), plotted against
chromosomal position. Seven of the 19 regions that were followed up yielded convincing evidence of association in the replication study, as indicated by
green coloration. The lower panel presents a quantile-quantile plot comparing observed versus expected P-values obtained for the 438,670 genotyped
SNPs. Red symbols represents all SNPs, orange symbols represent the results after excluding major histocompatibility complex (MHC) SNPs, and blue symbols
represent the results after excluding SNPs at all replicated loci. The gray area represents the 90% confidence interval expected under a null distribution

of P-values. Note that all panels are truncated at a —log;o(P-value) of 20; markers near HLA-C exceed this threshold considerably (P~1073). Adapted from

Nair et al., 2009b, with permission.

HLA-Cw6

As expected from our earlier work (Nair et al., 2006), the
MHC vyielded by far the strongest association signals in the
CASP study (Figure 2). The SNP that yielded the strongest
association with psoriasis (rs12191877, OReplication = 2.64,
Peombined << 107'%%) was in strong linkage disequilibrium
(LD) with HLA-Cw6 (" =0.63). In cases and controls for
which HLA-Cwé6 typing was available, HLA-Cw6 was much
more highly associated with psoriasis than any single SNP.
However, neither rs12191877 (Nair et al., 2009b) nor HLA-
Cwé itself (Feng et al., 2009) could fully account for the MHC
association signals. To search for additional disease-asso-
ciated variants, we carried out a forward selection procedure,
yielding a model with three imputed SNPs. Two of these were
in strong LD with HLA-Cw6 and are likely to be surrogates for
it. However, the third SNP (rs2022544, P-value=10"") maps
between the MHC Class Ill region and the HLA-DR gene
cluster and exhibits only weak LD with HLA-Cwé6 (©* =0.01).
These results confirm the predominance of HLA-Cwé in
terms of the magnitude of its genetic effect, but suggest that at
least one additional psoriasis susceptibility determinant
remains to be identified in the MHC.

Guttate psoriasis is very strongly associated with HLA-
Cwb, and in one study, this allele was present in 100% of
guttate psoriasis cases (Mallon et al., 2000). Guttate psoriasis
is frequently preceded by Streptococcal pharyngitis
(Gudjonsson and Elder, 2007a), and this is the only infection
that has been shown to trigger psoriasis in a prospective
cohort study (Gudjonsson et al., 2003). Further suggestive of
a critical role for the tonsils, other streptococcal infections of

the skin, such as impetigo or erysipelas, do not have the same
propensity to trigger psoriasis. Tonsillar T cells recognize
activated skin capillary endothelium (Akagi et al., 1992) and
express the skin-specific homing molecule CLA (cutaneous
lymphocyte antigen). During an episode of Streptococcal
pharyngitis, we envision that Streptococcal Ags are presented
in the context of HLA-Cw6 to naive T cells in the tonsils,
causing them to proliferate, differentiate into an effector/
memory phenotype, and acquire skin-homing capacity. In
addition, innate immune mechanisms may serve to poly-
clonally activate existing skin-homing memory T cells during
the initial infection. On the basis of the observation of
peptidoglycan-containing macrophages in the papillary and
perivascular infiltrates of guttate and chronic plaque psor-
iasis, it has been suggested that peptidoglycan, a major
constituent of the Streptococcal cell wall, may function to
activate T cells in psoriasis through a Toll-like receptor
(TLR)-mediated and cytokine-dependent mechanism (Baker
et al., 2006).

After homing to the skin, polyclonally activated T cells
may provoke the initial development of the small but
widespread lesions that are characteristic of guttate psoriasis.
In one study, a lack of clonal TCR gene rearrangement
coupled with skewing of TCR VB chain usage was observed
in acute flares of guttate psoriasis, suggesting that super-
antigens might be involved in the development of guttate
flares (Leung et al., 1995). In contrast, studies of chronic
plaque psoriasis have identified oligoclonal TCR rearrange-
ments, suggesting the involvement of nominal Ags rather
than superantigens (Chang et al., 1994; Prinz et al., 1999;
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Lin et al., 2001; Vollmer et al., 2001; Diluvio et al., 2006).
Importantly, the same clonal expansions of skin-homing
T cells are found in the tonsils and in lesional skin of psoriatic
patients (Diluvio et al, 2006). These findings suggest that
over time, a relatively small number of Streptococcus-
specific, skin-homing T cells begin to recognize self-Ags,
leading to the development of chronic plaque psoriasis
(Gudjonsson et al., 2004). Consistent with an ongoing role for
HLA-Cw6 in the chronic phase of the process, both chronic
plaque and generalized pustular psoriasis are also strongly
associated with HLA-Cw6 (Ozawa et al., 1998).

In at least half of guttate psoriasis cases, the disease
resolves spontaneously and recurs only rarely if at all. What
determines which patients will progress to chronic plaque
disease? Presumably, with the resolution of active infection,
pathogen-derived innate immune stimulants such as pepti-
doglycan are cleared. However, for a response to self-Ags to
develop leading to chronic plaque disease, there must be a
prolonged loss of immunological tolerance. One genetic
determinant of tolerance could be that certain self-Ags might
be presented in the context of HLA-Cw6 in such a way as to
overcome or bypass normal tolerance. However, the precise
nature of the Ag(s) involved has remained elusive. One study
found that HLA-Cw6 preferentially presented peptides
common to Streptococcal M protein and the hyperprolifera-
tive keratin K17 to skin-homing CD8+ T cells (Johnston
et al., 2004). This mechanism has been suggested to explain
the preferential reactivity of these cells for peptides with
structural homology between Streptococcal M protein and
the hyperproliferative keratins, K16 and K17 (Johnston et al.,
2004). Another study attempted to identify psoriasis Ags by
expression cloning of RNA derived from psoriatic skin (Jones
et al., 2004). However, at variance with expectation, T cells
from the blood of normal controls were as strongly reactive as
T cells derived from the blood of psoriatic patients. Although
our model focuses on HLA-Cw6 as the key MHC determinant
of immunological self-tolerance in psoriasis, considerable
evidence supports the notion that HLA-B alleles that are not
in LD with HLA-Cwé are also associated with psoriasis and
PsA, notably with HLA-B27, HLA-B38, HLA-B39 (Espinoza
et al., 1982), and HLA-B46 (Choonhakarn et al., 2002; Nair
et al., 2009c¢). It is possible that these additional associations
could reflect loss-of-tolerance events similar to those we
envision for Streptococcus pyogenes and HLA-Cw6, except
that different microorganisms provide the initial Ags.

Loss of tolerance could also involve the sudden appear-
ance of proteins that are strongly expressed in psoriasis
but not in normal skin. When processed, peptides derived
from such proteins could serve as neoantigens. In addition to
the keratins K16 and K17 discussed above, other proteins
that are strongly upregulated in psoriasis include human
B-defensin-2 (encoded by DEFB4), psoriasin (ST00A7),
calgranulin (§700A8 and S100A9), small proline-rich region
proteins (SPRR), and LCE proteins. Interestingly, many of
these proteins are encoded by genes located in the epidermal
differentiation complex located on human chromosome
1q21.3, in which genetic linkage and association to psoriasis
have been reported (Bhalerao and Bowcock, 1998;
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Capon et al, 1999a, 2001; de Cid et al, 2009; Zhang
et al., 2009).

Psoriatic lesions manifest a complex and highly active
proteolytic environment, particularly in the more differen-
tiated layers in which proteins encoded in the epidermal
differentiation complex are most highly expressed (Zeeuwen
et al, 2009). It is possible that this aberrant proteolytic
environment might also contribute to the development of
neoantigenic peptides. Alternatively, proteases could be
involved in the generation of innate defense peptides with
altered antimicrobial and/or inflammatory properties, as has
been observed for cathelicidins in rosacea (Yamasaki et al.,
2007).

Many of these potentially neoantigenic proteins are
intracellular components of keratinocytes (KCs) and yet must
be presented on the surface of dendritic APC for effective Ag
presentation, suggesting a requirement for cross-presentation
(Heath et al., 2004). The fact that cross-presentation is
dependent on CD4+ T cell might explain the observed
dependence of psoriasis on CD4+ T cells in the severe
combined immunodeficient mouse xenograft model (Nickol-
off and Wrone-Smith, 1999). However, it remains possible
that Ag-driven CD4+ T cells have a more direct role, as
many of the observed TCR rearrangements observed in
psoriatic dermis arise in CD4 + cells (Chang et al., 1994).
Moreover, Streptococcus-specific CD4 + T-cell lines from
psoriatic patients responded in an HLA-DR-restricted fashion,
ruling out mitogenic or superantigenic stimulation (Baker
et al., 2006). It has been suggested that Streptococcal
peptidoglycan may function both as an Ag and as a stimulus
for innate immunity by TLR activation (Baker et al., 2006). In
any event, it is important to note that the vast majority of
T cells in psoriatic skin are not clonally expanded, indicating
that additional, non-Ag-specific mechanisms are involved in
maintaining the psoriatic infiltrate.

HLA-C also serves as a ligand for killer immunoglobulin-
like receptors (KIRs), which can either inhibit or stimulate
natural killer cells. Interestingly, the KIR locus has been
reported to be associated with PsA (Nelson et al., 2004;
Williams et al, 2005). Natural killer cells are major
producers of IFNs and serve as a bridge between innate
and acquired immunity. Inhibitory KIRs negatively regulate
natural killer cell activation by interacting with a dimorphic
allotype (Asn80/Lys80) of HLA-C (Long and Rajagopalan,
2000). HLA-Cwé is one of several “group 2’ alleles carrying
Lys at position 80. Thus, if this mechanism were responsible
for the observed association of HLA-Cw6 with psoriasis, it
would be expected that a combination of all “group 2"
alleles would provide a stronger association signal in
individuals carrying the cognate inhibitory KIR genotype
than does HLA-Cw®6, but this was not the case in PsA (Nelson
et al., 2004). Further increasing complexity, because the KIR
locus has an evolutionary history of expansion and contrac-
tion, for some inhibitory receptors, an individual may encode
receptor only, ligand only, both receptor and ligand, or
neither one. Thus, the role of HLA-Cwé6 as a genetic regulator
of natural killer cell activity in psoriasis remains to be
clarified.



NF-kB signaling

A20 and ABINT are the products of the TNFAIP3 and TNIP1
genes, respectively. These proteins interact with each other
and participate in the ubiquitin-mediated destruction of IKKy/
NEMO, thereby regulating a key nexus of NF-kB signaling
(Mauro et al.,, 2006). The degradation of several other
components of the TNF signaling pathway is also regulated
by A20 (Mauro et al, 2006). TNF-o blockade markedly
improves psoriasis-like pathology in a mouse model of
psoriasis induced by injection of IL-23 (Chan et al., 2006),
and a region of mouse chromosome 10 containing Tnfaip3
promotes psoriasis in a TNF-a-dependent manner in another
mouse model (Wang et al., 2008). Given that atherosclerosis
is a major co-morbidity of psoriasis (Gelfand et al., 2006), it is
notable that susceptibility to atherosclerosis has also been
associated with the same region of mouse chromosome 10
(Idel et al., 2003). Moreover, SNPs near TNFAIP3 yield
genome-wide significant associations with rheumatoid
arthritis (Plenge et al,, 2007; Thomson et al., 2007) and
systemic lupus erythematosus (Graham et al., 2008; Musone
et al., 2008). These polymorphisms were not associated with
psoriasis in the CASP study (all P>0.30) and are not in LD
with the psoriasis-associated alleles (* <0.03), suggesting
that different alleles of TNFAIP3 increase susceptibility to
systemic lupus erythematosus, rheumatoid arthritis, and
psoriasis. Given that each of these diseases can be associated
with arthritis, it is interesting that the NF-xB inhibitor
parthenolide abrogated IL-23-mediated stimulation of recep-
tor activator of NF-kB (RANK) ligand on CD4 + T cells in an
arthritogenic mouse model (Ju et al., 2008).

Tissue macrophages also have an important role in mouse
models of psoriasis, even in the absence of T cells (Stratis
et al., 2006; Wang et al., 2006). As many events in
macrophage and dendritic cell (DC) activation and function
are NF-kB dependent, genetic variation in TNFAIP3 and
TNIP1 could influence the balance between a self-limited
response in which tolerance is eventually restored, and a self-
sustaining one in which it is not. Clonal expansion of T cells
requires the active participation of APC, especially DCs,
which are intimately involved in the regulation of immuno-
logical tolerance at least in part through the Ag-specific
stimulation of regulatory T cells (Yamazaki and Steinman,
2009). As discussed below, an increasingly complex network
of resident and inflammatory DCs with tolerogenic as well as
immunostimulatory capacities is emerging in psoriasis and
other inflammatory skin disorders.

IL-23 signaling

Three psoriasis-associated genetic signals map to compo-
nents of the IL-23 ligand-receptor complex (Nair et al.,
2009b). One is found near IL12B (which encodes the p40
subunit common to IL-23 and IL-12), another is located near
IL23A (which encodes the p19 subunit of IL-23), and a third
resides near IL23R (which encodes a subunit of the IL-23
receptor). This was the first study to implicate genetic variants
near [IL23A as conferring susceptibility to any human
autoimmune disorder. [L-23 signaling promotes cellular
immune responses by promoting the survival and expansion
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of a recently identified subset of T cells expressing IL-17 that
protects epithelia against microbial pathogens (Bettelli et al.,
2007). These results lead us to speculate that aberrant IL-23
signaling renders certain individuals susceptible to inap-
propriate immune responses targeting epithelial cells, thus
contributing to the chronic and relatively skin-specific
inflammation seen in psoriasis. This speculation is supported
by the excellent antipsoriatic efficacy of biologics targeting
the p40 subunit (Krueger et al., 2007), coupled with the fact
that IL72B and IL23A are markedly overexpressed in psoriatic
lesions, whereas ILT12A is not (Lee et al., 2004).

Given that the epithelial linings of the skin and the gut
are somewhat similar, it is notable that one of the same
genetic variations in the IL23R gene that increases risk for
psoriasis also confers risk for Crohn’s disease (Duerr et al.,
2006), a condition that is strongly associated with psoriasis
clinically (Najarian and Gottlieb, 2003). We also showed
genome-wide significant associations between PsA and
IL12B (Nair et al., 2009b), and we and others have reported
strong associations between PsA and [L23A and/or IL23R
(Liu et al., 2008; Huffmeier et al., 2009; Nair et al., 2009b).
Given that PsA is a highly destructive form of arthritis
associated with increased RANK-positive myeloid osteo-
clast precursors (Ritchlin et al, 2003), it is notable that
IL-23 promotes osteoclast formation by upregulation of
RANK in myeloid precursor cells (Chen et al., 2008), while
inducing expression of RANK ligand on CD4+ T cells
(Ju et al., 2008).

Th1-Th2-Th17 balance

One of the genetic signals we identified contains the IL13,
IL4, IL-5, and RADS50 genes in a region of strong LD.
Although the most highly significant signals reside closer to
IL4 and IL713, a locus control region that regulates the
transcription of IL13, IL4, and IL5 resides in the RAD50 gene
(Lee et al, 2003). Thus, it is possible that the functional
variant may influence the expression of /L4, IL5, and/or IL13.
These cytokines act at several levels to regulate allergic
responses and defense against extracellular pathogens. In
addition to biasing the T-cell repertoire toward Th2 differ-
entiation, IL-4 and IL-13 inhibit the development of Th17
cells from naive T cells (Harrington et al., 2005; Newcomb
et al., 2009). Furthermore, IL-4 was shown to instruct DCs to
produce IL-12 and promote Th1 development when present
during the initial activation of DCs by infectious agents
(Biedermann et al., 2001). This unexpected result may be
explained by the more recent observation that the levels of
IL-4 present during DC differentiation regulate their polariz-
ing effects on T-cell differentiation, with low levels promoting
Th2 and higher levels promoting Th1 (Guenova et al., 2008).
IL-4 and IL-13 are markedly overexpressed in atopic
dermatitis skin relative to normal skin, but not in psoriasis
(Van der Ploeg et al., 1997; Nomura et al., 2003). Treatment
of psoriasis with IL-4 results in significant clinical improve-
ment (Ghoreschi et al., 2003), which has recently been
shown to be accompanied by reduced expression of 1L-23
and reduced numbers of Th17 cells (Guenova et al., 2009).
The fact that we observe genetic signals at both ends of this
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polarizing spectrum (IL-23 on the one hand, and IL-4/IL13 on
the other) suggests that Th1-Th2-Th17 balance is likely to be
a key functional and genetic determinant of psoriasis.

Putting it all together: from initiation of lesions to generation of
the epidermal response

Recently, plasmacytoid DCs (pDCs) have been implicated in
the initiation of psoriasis lesions (Nestle et al., 2005). pDCs
are a specialized subset of DCs that are increased in number
in psoriatic lesions and characterized by the production of
large amounts of IFN-o (Wollenberg et al., 2002). IFN-o had
been suspected to have a role in psoriasis based on reports of
exacerbations in psoriatic patients receiving intravenous
IFN-o (Quesada and Gutterman, 1986) and patients treated
with the topical TLR7 agonist imiquimod (Gilliet et al., 2004).
IFN-o. has multiple pro-inflammatory biological functions
including upregulation of MHC class | expression (Hermann
et al., 1998), inducing cross-presentation of self-Ags to
CD8+ T cells (Le Bon et al., 2003), and activation of T cells
(Nestle et al., 2005). Activation of these cells can occur
through binding of the antimicrobial peptide LL-37 in
complexes with host DNA, with intracellularly expressed
TLRI (Lande et al., 2007). LL-37 is a secreted peptide that is
abundantly expressed in established psoriatic lesions (Frohm
et al, 1997), providing a plausible mechanism for pDC
activation. TLR7 signaling occurs in part through the NF-«xB
pathway (Tamura et al., 2008) and this could be one of the
means by which the psoriasis risk variants in TNFAIP3 and
TNIPT influence psoriasis risk.

In addition to pDC, there is a very complex population of
myeloid DCs in psoriatic skin, including epidermal Langer-
hans cells, inflammatory dendritic epidermal cells, as well as
resident and inflammatory dermal DCs (Nickoloff et al.,
2007; Zaba et al., 2009b). The myeloid DC population is
expanded and activated in psoriasis (Baadsgaard et al., 1989;
Nestle et al., 1994), with a marked increase in the numbers of
immature DCs producing inflammatory cytokines and cap-
able of stimulating T cells producing IL-17 and IFN-y
(Kryczek et al., 2008; Zaba et al., 2009a). Experiments
undertaken in the uninvolved skin xenograft model suggest
that the induction of myeloid DC maturation and/or activa-
tion is a key intermediary through which IFN-a produced by
pDCs leads to T-cell activation by myeloid DC (Nestle et al.,
2005). Again, variants in the IL12B, IL23A, IL23R, TNFAIP3,
and/or TNPT genes could all have plausible role(s) in this
process.

As T cells respond clonally to Ags (self-derived or foreign)
in the context of HLA-Cw®6, and/or more broadly to cytokines
produced by activated DC and/or macrophages, they will
differentiate, expand, and activate their effector functions.
Some of these will be naive T cells being stimulated to
develop into different lineages, such as Th1, Th2, or the
progenitor(s) of T cells expressing IL-17 and/or IL-22 (Mills,
2008), whereas others will be skin-homing memory T cells
(Clark et al., 2006) or regulatory T cells (Sakaguchi, 2004).
Subsets of memory CD4 + and CD8+ T cells will expand
locally in the dermis in response to IL-23 and IL-1, which in
turn are produced by DC in response to stimuli such as IFN-y
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(Kryczek et al., 2008) (Figure 1). Genetically mediated
hyperfunction of IL-23 itself (through variants of IL712B and
IL23A) and/or of its receptor (through IL23R) could enhance
the expansion of T cells expressing IL-17 and/or IL-22.
Whether through direct effects on T cells or altered DC
programming, genetically mediated abnormalities in the
expression or function of IL-4 and/or IL-13 could lead to
development of Th1 bias, leading to increased expression of
IFN-y and DC-mediated expansion of T cells producing IL-17
and/or IL-22 (Figure 3).

Intraepidermal CD8+ T cells producing IL-17 and/or
IL-22 can be predicted to have a particularly important role in
promoting the psoriatic epidermal response, as there would
be no need for IL-17 and IL-22 produced by these cells to
diffuse from the dermis into the epidermis. IL-17 and IL-22
strongly upregulate KC-derived effectors of innate defense
known to be highly overexpressed in psoriasis, including the
defensins hBD-2 and hBD-3, CCL20, ST00A7, STO0A8, and
ST100A9 (Boniface et al., 2005; Wilson et al., 2007; Zheng
et al,, 2007; Guttman-Yassky et al., 2008; Kryczek et al.,
2008; Ma et al., 2008). Interestingly, all these molecules have
been shown to have chemotactic as well as antimicrobial
activity, and are all induced in response to epidermal insult
(Schauber and Gallo, 2007). This could explain the
well-known tendency of psoriasis to flare at sites of skin
injury (the Koebner phenomenon). Thus, it would appear that
T-cell-derived cytokines have a key role not only in
stimulating the antimicrobial activities of KCs but also in
their ability to promote the influx of inflammatory cells. We
have recently shown that this response is activated more
often in uninvolved psoriatic skin than it is in site-matched
skin from normal individuals, in concert with a decrease
in expression of genes involved in lipid biosynthesis
(Gudjonsson et al., 2009). We speculate that this subtle but
highly coordinated response might represent the incipient
epidermal response to T cells whose normal task is skin
immunosurveillance.

Despite decades of study, the mechanism(s) by which
cutaneous inflammation provokes epidermal hyperplasia in
psoriasis have remained enigmatic. Early studies suggested
that psoriatic KCs are refractory to cAMP-dependent growth
regulatory signals (Voorhees and Duell, 1971) or that KCs are
more responsive to psoriatic fibroblasts than to normal
fibroblasts (Saiag et al., 1985). Once it became clear that
the T-cell-specific immunosuppressant cyclosporine rapidly
and markedly reduced psoriatic epidermal hyperplasia (Ellis
et al., 1986) and cytokine expression (Elder et al, 1993;
Kojima et al., 1994), and that several other T-cell-selective
immunomodulators were clinically effective (Prinz et al.,
1991; Sugiyama et al., 1993; Gottlieb et al., 1995; Abrams
et al.,, 2000), the focus shifted to T cells. These clinical
observations prompted the use of in vitro and animal models
of psoriasis, which further supported a critical role for T cells.
Making use of short-term cultures of human monolayer KCs,
it was reported that T-cell clones could produce soluble
factors that were mitogenic for KCs (Prinz et al., 1994), and
that psoriatic KCs are hyperresponsive to the effects of T-cell-
derived cytokines, at least one of which was IFN-y
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Figure 3. Model integrating the genetics and immunology of psoriasis. Genes identified as psoriasis-associated by the Collaborative Association Study of
Psoriasis genome-wide association study are italicized. The majority of dermal T cells are CD4 + (purple); most of these are Th1, but ~5% of them
produce IL-17 (Th17, yellow halo). Most epidermal T cells are CD8 + (green circles) and about 5% of them express IL-17 (Tc17, yellow halo). Upper

right panel—HLA-Cw6 may increase susceptibility to psoriasis by presenting antigens to CD8+ T cells from the surface of dendritic cells (DCs, blue),
and/or by presenting keratinocyte antigens to activated CD8 + T cells. As indicated by the partial yellow halo, some of these T cells may express IL-17.
Lower right panel—macrophages (Mds, orange) and DCs express TNF receptors and Toll-like receptors (TLRs) that signal through IKK-y to promote translocation
of NF-kB to the nucleus. The proteins encoded by TNFAIP3 (A20) and TNIPT (ABINT) are capable of binding to each other, and cooperatively block this
signaling by altering patterns of protein ubiquitylation. Lower left panel—IL23A and IL12B encode the subunits of IL-23. IL23R encodes one subunit of the
receptor for IL-23. IL4 and IL13 may participate in psoriasis by directly skewing the differentiation of CD4 + T cells toward Th2, or by altering the cytokine
profile of DCs in such a way as to favor Th1 differentiation. As shown in Figure 1, Th1 cells stimulate the production of IL-23 by DCs. In turn, IL-23 stimulates
the production of IL-17 and/or IL-22 by Th17 cells. Upper left panel—IL-17 and IL-22 upregulate keratinocyte innate immune defense mechanisms, including
defensins, psoriasin (ST00A7), and other proteins that are highly expressed in psoriasis lesions. In addition, IL-22 may promote keratinocyte proliferation
and/or alter keratinocyte differentiation. Reproduced from Nair et al., 2009a, with permission.

(Bata-Csorgo et al, 1995). However, it is difficult to
extrapolate from monolayer KC cultures to the in vivo
situation, because KCs rapidly become hyperproliferative in
culture. This experimental problem was overcome when it
was shown that injection of T cells can provoke epidermal
hyperplasia in pre-psoriatic skin grafted onto severe com-
bined immunodeficient mice (Nickoloff and Wrone-Smith,
1999) and that the entry of T cells into the epidermis is
necessary for spontaneous development of the epidermal
hyperplasia in the AGR xenograft model (Conrad et al.,
2007). Another approach has been the use of skin equivalent
models. However, despite their ability to stratify, these
models retain an innate immune gene expression response
very similar to psoriasis (McFarland et al., 2008), and do not
fully recapitulate the distinctive cellular milieu of psoriatic
lesions. Despite these limitations, IL-22 has been shown to
promote epidermal thickening and altered KC differentiation,
along with marked upregulation of the innate defense
response, in three independent studies (Boniface et al.,
2005; Sa et al., 2007; Nograles et al., 2008). However,
actual KC hyperproliferation was seen in only one of these
studies (Sa et al.,, 2007). Interestingly, in this study it was

necessary to block the EGFR to observe the hyperproliferative
effect of IL-22 (Sa et al., 2007).

In addition to these cytokine-driven mechanisms, CD8 +
T cells might also promote epidermal hyperplasia by
inflicting cytotoxic injury on KCs. Epidermal CD8 + T cells
in psoriasis express perforin, and therefore could directly
damage KCs in the traditional cytotoxic manner (Kastelan
et al., 2004; Prpic Massari et al., 2007). This damage might be
sublethal in nature, as frank cytolysis of KCs is not a
prominent feature of psoriasis. It has been suggested that
psoriatic KCs are relatively resistant to apoptotic damage
because they exhibit exaggerated features of senescence
(Nickoloff, 2001). KCs are known to respond to Fas ligand-
mediated apoptotic insult by elaborating the epidermal
growth factor-like growth factor, amphiregulin, thereby
encouraging the proliferation and survival of their neighbors
despite their own demise (lordanov et al., 2005). These
findings leave open the long-suggested possibility that
autocrine EGFR activation may have an important role in
the elicitation of psoriatic epidermal hyperplasia (Elder et al.,
1989). Of course, CD8+ T cells could also trigger KCs to
release a variety of other soluble factors, including cytokines

www.jidonline.org 1221


http://www.jidonline.org

JT Elder et al.
Immunology and Genetics of Psoriasis

such as TNF-a, chemokines such as IL-8 and CCL20,
eicosanoids, and/or growth factors, which could further
increase local inflammation and stimulate KC proliferation.

Despite the evident experimental complexities presented
by the psoriatic tissue response, we now have the beginnings
of a genetic ““Rosetta stone”” pointing us toward molecular
pathways that will help us finally understand why such a
distinctive pattern of cutaneous inflammation develops in
psoriasis, and how this inflammation provokes its equally
distinctive epidermal response. Although this stone requires
further extensive polishing (that is, the identification of
additional genetic signals and the elucidation of causative
genetic variants outside the MHC), it should be valuable for
years to come.
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